Bài 5: Trường hợp bằng nhau thứ ba của tam giác góc - cạnh - góc (g.c.g)

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Vũ Minh Hằng

Cho tam giác ABC có AB < AC . Kẻ tia phân giác AD của góc BAC ( D thuộc BC ). Trên cạnh AC lấy điểm E sao cho AE = AB , trên tia AB lấy điểm F sao cho AF = AC . Chứng minh rằng :

a. \(\Delta BDF=\Delta EDC\) b. BF = EC

c. F,D,E thẳng hàng d. AD vuông góc FC

Akai Haruma
22 tháng 11 2017 lúc 22:43

Lời giải:

a) Ta có:

\(\left\{\begin{matrix} AB=AE\\ AF=AC\end{matrix}\right.\Rightarrow AF-AB=AC-AE\)

\(\Leftrightarrow BF=CE\) (1)

Xét tam giác $ADF$ và $ADC$ có:

\(\left\{\begin{matrix} AD -\text{chung}\\ \angle FAD=\angle CAD(\text{do AD là phân giác})\\ AF=AC\end{matrix}\right.\)

\(\Rightarrow \triangle ADF=\triangle ADC(c.g.c)\Rightarrow DF=DC\) (2)

Tương tự, ta cm đc \(\triangle ABD=\triangle AED(c.g.c)\Rightarrow BD=ED\) (3)

Từ \((1);(2);(3)\Rightarrow \triangle BDF=\triangle EDC\) (c.c.c)

b) Đã chứng minh ở phần a

c) Vì \(\triangle BDF=\triangle EDC(cmt)\Rightarrow \angle BDF=\angle EDC\)

\(\Rightarrow \angle BDF+\angle BDE=\angle EDC+\angle BDE\)

\(\Leftrightarrow \angle FDE=\angle BDC=180^0\Rightarrow F,D,E\) thẳng hàng

d)

Do $AF=AC$ nên tam giác $FAC$ cân tại $A$. Do đó đường phân giác $AD$ đồng thời cũng là đường cao ứng với cạnh đáy $FC$ (tính chất của tam giác cân)

\(\Rightarrow AD\perp FC\) (đpcm)


Các câu hỏi tương tự
Phương Thúy Ngô
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Bùi Hữu Quang Huy
Xem chi tiết
Lê Phát
Xem chi tiết
vương nguyễn quỷ
Xem chi tiết
CHICKEN RB
Xem chi tiết
Nguyễn Trâm anh
Xem chi tiết