Theo giả thiết ta có hệ : \(\begin{cases}A=90^0\\a,b,\frac{\sqrt{6}}{3},c\end{cases}\)\(\Leftrightarrow\begin{cases}a^2=b^2+c^2\\\frac{2}{3}b^2=ac\Leftrightarrow b^2=\frac{3}{2}ac\end{cases}\)
Từ đó suy ra \(a^2=\frac{3}{2}ac+c^2\Leftrightarrow2a^2=3ac+2c^2\Leftrightarrow\left(2a+c\right)\left(a-2c\right)=0\)
\(\Rightarrow a=2c\left(2a+c>0\right)\)
Mà \(\cos B=\frac{c}{a}=\frac{1}{2}\Rightarrow B=60^0,C=30^0\)
Vậy tam giác ABC là tam giác nửa đều