a: \(IA^2=\left(1-x\right)^2+\left(-2-y\right)^2\)
\(IB^2=\left(-3-x\right)^2+\left(5-y\right)^2\)
\(IC^2=\left(-1-x\right)^2+\left(4-y\right)^2=\left(x+1\right)^2+\left(y-4\right)^2\)
Theo đề, ta có:\(\left\{{}\begin{matrix}\left(x-1\right)^2+\left(y+2\right)^2=\left(x+3\right)^2+\left(y-5\right)^2\\\left(x+3\right)^2+\left(y-5\right)^2=\left(x+1\right)^2+\left(y-4\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2-2x+1+y^2+4y+4=x^2+6x+9+y^2-10y+25\\x^2+6x+9+y^2-10y+25=x^2+2x+1+y^2-8y+16\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-2x+4y+5=6x-10y+34\\6x-10y+34=2x-8y+17\end{matrix}\right.\)
=>I(-9/2;-1/2)
b: \(AB=\sqrt{\left(-3-1\right)^2+\left(5+2\right)^2}=\sqrt{65}\)
\(AC=\sqrt{\left(-1-1\right)^2+\left(4+2\right)^2}=2\sqrt{10}=\sqrt{40}\)
\(BC=\sqrt{\left(-1+3\right)^2+\left(4-5\right)^2}=\sqrt{5}\)
Vì ΔABC ko vuông nên chắc chắn sẽ ko có điểm D nào thỏa mãn ABCD là hình chữ nhật
c: \(C=\sqrt{65}+\sqrt{40}+\sqrt{5}\left(cm\right)\)