Cho tam giác ABC có 3 góc nhọn (\(\widehat{ABC}>\widehat{ACB}\)) và nội tiếp đường tròn (O). Kẻ đường kính AK của (O). Gọi E,F lần lượt là hình chiếu vuông góc của B và C trên đường thẳng AK. Kẻ đường cao AD của \(\Delta ABC\).
a, Cm: 4 điểm A,C,F,D cùng thuộc một đường tròn và DF ⊥ AB
b, Cho 2 điểm B, C cố định và A di động tên cung lớn BC của đường tròn (O) (A≠B; A≠C) sao cho ΔABC có 3 gốc nhọn và \(\widehat{ABC}>\widehat{ACB}\). Chứng mình đường trung trực của đoạn thẳng DE luôn đi qua một điểm cố định.