cho tam giác ABC nhọn có AB<AC nội tiếp đường tròn tâm O , bán kính R . gọi H là giao điểm của 3 đường cao AD,BE,CF của tam giác ABC . kẻ đường kính AK của đường tròn (O) , AD cắt (O) tại điểm N
1. chứng minh AEDB , AEHF là tứ giác nội tiếp và AB.AC=2R.AD
2. chứng minh HK đi qua tring điểm M của BC
3. gọi bán kính đường tròn ngoại tiếp tứ giác AEHF là r . chứng minh OM^2=R^2-r^2
4. chứng minh OC vuông góc với DE và N đối xứng với H qua đường thẳng BC
Bài 1. Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O). Các đường cao AD, BE và CF của tam giác ABC cắt nhau tại H.
a) Chứng minh BCEF và CDHE là các tứ giác nội tiếp.
b) Chứng minh EB là tia phân giác của góc FED và tam giác BFE đồng dạng vói tam giác DHE.
c) Giao điểm của AD với đường tròn (O) là I (I khác A), IE cắt đường tròn (O) tại K (K khác I). Gọi M là trung điểm của đoạn thằng EF. Chứng minh rằng ba điểm B, M, K thẳng hàng.
Cho tam giác ABC có ba góc nhọn(AB<AC; AB <BC) nội tiếp đường tròn (O; R). Hai đường cao AD và BE cắt nhau tại H, CH cắt AB tại F. Tia EF cắt tia CB tại S.
1. Chứng minh: Tứ giác BFEC nội tiếp, xác định tâm I của đường tròn này.
2. Chứng minh: FC là tia phân giác góc EFD và AF.AB =AE.AC
3. Tia EF cắt tia CB tại S. Tiếp tuyến tại B của đường tròn (I) cắt FC và AS lần lượt tại P và M. Chứng minh:ME là tiếp tuyến của (I).
4. Đường thẳng qua D song song với BE cắt BM tịa N. Đường tròn ngoại tiếp tam giác MNE cắt BE tại điểm thứ hai là K. Đường thẳng qua B song song với AC cắt DF tại Q. Chứng minh: OK vuông góc với PQ
Cho tam giác ABC nhọn nội tiếp đường tròn (O;R). Gọi Q là trung điểm của BC và các đường cao AD, BE, CF cắt nhau tại H.
a) Chứng minh : AH = 2OQ
b) Chứng minh rằng nếu : AB + AC = 2BC thì sinB + sin C = 2sin A
c) Cho BC = \(R\sqrt{2}\), chứng minh : AE * FH + AF * HE = \(R^2\sqrt{2}\)
cho tam giác ABC nhọn (AB < AC) nội tiếp đường tròn (O). Các đường cao AD, BE, CF cắt nhau tại H. Tia EF cắt tia CB tại K.
a/ c/m tứ giác BFEC nội tiếp và KF.KE = KB.KC
b/ Đường thẳng KA cắt (O) tại M. Chứng minh tứ giác AEFM nội tiếp
c/ Gọi N là trung điểm của BC. Chứng minh tứ giác DFEN nội tiếp
d/ C/m M, H, N thẳng hàng
Cho tam giác ABC nhọn nội tiếp (O). Các đường cao AD,BE,CF cắt nhau tại H
a) C/m tứ giác BFHD,BFEC nội tiếp. Xđ đường tròn tâm I ngoại tiếp tứ giác BFEC.
b) Vẽ đường kính AK. C/m AB.AC=AD.AK
c) Vẽ CN vuông góc AJK. C/m ID=IN
d) EF cắt BC tại M, KH cắt (O) tại P. C?m P,M,A thẳng hàng
cho tam giác ABC (AB<AC) có ba góc nhọn nội tiếp đường tròn tâm O . Ba đường cao AD,BE,CF cắt nhau tại H. Vẽ hình bình hành AHCK.
a) Chứng minh tứ giác ABCK nội tiếp .
b) Gọi N là điểm đối xứng của H qua AC. Chứng minh tứ giác ANKC là hình thang cân.
mn ơi , chỉ mình câu b với ạ . Mình cảm ơn nhiều
Cho tam giác ABC có 3 góc nhọn (AB<BC,AC) nội tiếp (O). Kẻ các đường cao BD,CE cắt nhau tại H (D thuộc AC, E thuộc AB)
a, Chứng minh BCDE là tứ giác nội tiếp
b, Chứng minh DA.DC= DH.DB
c, Vẽ đường tròn tâm H, bán kính HA cắt các tia AB, AC lần lượt tại M,N. Chứng minh OA vuông góc với MN.
d, Các tiếp tuyến tại M,N của (H,HA) cắt nhau tại P. Chứng minh AP đi qua trung điểm của BC.