Cho ∆ABC có ba góc nhọn (AB < AC) đường cao AH và D, E, F lần lượt là trung điểm các cạnh AB, AC, BC, Gọi K là điểm đối xứng của H qua D.
a) Chứng minh AHBK là hình chữ nhật,
b) Tứ giác DEFH là hình gì? Vì sao?
c) Tìm thêm điều kiện của tam giác ABC để tứ giác AHBK là hình vuông
Cho tam giác ABC nhọn có trục tâm H. Các đường vuông góc với AB tại B và vuông góc với AC tại C cắt nhau tại D.
a) Chứng minh tứ giác BDCH là hình bình hành.
b) Gọi M là trung điểm của BC. Chứng minh ba điểm H, M, D thẳng hàng.
c) Chứng minh 4 điểm A, B, D, C cách đều một điểm.
d) Tìm điều kiện của tam giác ABC để tứ giác BDCH là hình thoi.
Cho tam giác nhọn ABC có 2 đường cao là BD và CE. Gọi M là trung điểm của BC. a) Chứng minh MED là tam giác cân. b) Gọi I, K lần lượt là chân các đường vuông góc hạ từ B và C đến đường thẳng ED. Chứng minh rằng IE= DK.
Cho tam giác ABC nhọn, đường cao AH, CK. Kẻ AD và CE vuông góc HK. Gọi N là trung điểm của AC. Chứng minh HN = KN và DK = HE
Cho tam giác ABC, các đường trung tuyến BD và CE cắt nhau ở G. Gọi H là trung điểm của GB, K là trung điểm của GC
a) Chứng minh rằng tứ giác DEHK là hình bình hành
b) Tam giác ABC có điều kiện gì thì tứ giác DEHK là hình chữ nhật
c) Nếu các đường trung tuyến BD và CE vuông góc với nhau thì tứ giác DEHK là hình gì ?
cho tam giác ABC có 3 gọc nhọn AB<AC các đường cao BE,CF cắt nhau tại H gọi M là trung điểm BC , K là điểm đối xứng với H qua M a,chứng minh tứ giác BHCK là hình bình hànhb, BKvuông góc với AB và CK vuông góc với ACc, gọi I là điểm đối xứng với H qua BC . chứng minh tứ giác BIKC LÀ hình thang când, Bk cắt HI ở G tam giác ABC phải cs thêm điều kiện gì để tứ giác GHCK là hình thang cân
Cho tam giác ABC các đường trung tuyến BD và CE cắt nhau ở G. Gọi H là đường trung điểm của GB, K là trung điểm của GC.
a. Chứng minh: Tứ giác DEHK là hình bình hành.
b. Nếu tam giác ABC cân tại A. Chứng minh: BD=CE và DEHK là hình chữ nhật.
Bài 14: Cho △ABC có ba góc nhọn AB < AC. Các đường cao BE, CF cắt nhau tại H. Gọi M là trung điểm của BC, K là điểm đối xứng với H qua M.
a) Chứng minh: Tứ giác BHCK là hình bình hành.
b) Chứng minh: BK ⊥ AB và CK ⊥ AC.
c) Gọi I là điểm đối xứng của H qua BC. CMR: Tứ giác BIKC là hình thang cân.
d) BK cắt HI tại G, Tam giác ABC có thêm điều kiện gì để tứ giác GHCK là hình thang cân.
Bài 14: Cho △ABC có ba góc nhọn AB < AC. Các đường cao BE, CF cắt nhau tại H. Gọi M là trung điểm của BC, K là điểm đối xứng với H qua M.
a) Chứng minh: Tứ giác BHCK là hình bình hành.
b) Chứng minh: BK ⊥ AB và CK ⊥ AC.
c) Gọi I là điểm đối xứng của H qua BC. CMR: Tứ giác BIKC là hình thang cân.
d) BK cắt HI tại G, Tam giác ABC có thêm điều kiện gì để tứ giác GHCK là hình thang cân.