Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm M, trên tia đối của tia CB lấy điểm N sao cho BM=CN. Chứng minh tam giác AMN là tam giác cân
Cho \(\Delta\)ABC cân tại A. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Kẻ BM vuông góc với AD tại M, kẻ CN vuông góc với AE tại N. Gọi O là giao điểm của hai đường thẳng BM và CN. CMR: AO là tia phân giác góc DAE.
Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm M, trên tia đối của tia CB lấy điểm N sao cho BM=CN
a) Chứng minh: tam giác AMN cân
b) Kẻ BE vuông góc với AM; CF vuông góc với AN. Chứng minh: tam giác BME = tam giác CNF
c) EB và FC kéo dài cắt nhau tại O. Chứng minh: AO là tia phân giác của góc MAN
d) Qua M kẻ đường thẳng vuông góc với AM
Qua N kẻ đường thẳng vuông góc với AN
Chúng cắt nhau tại H. Chứng minh: ba điểm A, O, H thẳng hàng
Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm M, trên tia đối của tia CB lấy điểm N sao cho BM=CN
a) Chứng minh: tam giác AMN cân
b) Kẻ BE vuông góc với AM; CF vuông góc với AN. Chứng minh: tam giác BME = tam giác CNF
c) EB và FC kéo dài cắt nhau tại O. Chứng minh: AO là tia phân giác của góc MAN
d) Qua M kẻ đường thẳng vuông góc với AM
Qua N kẻ đường thẳng vuông góc với AN
Chúng cắt nhau tại H. Chứng minh: ba điểm A, O, H thẳng hàng
Cho tam giác cân ABC (AB = AC). Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB, AC lần lượt ở M, N. Chứng minh rằng:
a) DM = EN
b) Đường thẳng BC cắt MN tại trung điểm I của MN.c) Đường thẳng vuông góc với MN tại I luôn đi qua một điểm cố định khi D thay đổi trên BC
Cho tam giác ABC cân tại A. AH vuông góc với BC(H € BC)
a) CM HB=HC
b) Trên tia đối BC lấy điểm M. Trên tia đối CB lấy điểm N sao cho BM=CN. Kẻ BH vuông góc với AM tại E, CF vuông góc với AN tại F. Gọi I là giao điểm của EB và FC. CM A, H, I thẳng hàng
Bài 8: Cho tam giác ABC, AB = AC. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Chứng minh: a) Tam giác ADE cân b) ABD = ACE
Bài 9: Cho tam giác ABC, AB = AC. Trên cạnh AB lấy điểm D, trên cạnh AC lấy điểm E sao cho AD = AE. Gọi M là giao điểm của BE và CD. Chứng minh: a) BE = CD b) BMD = CME. c) AM là tia phân giác của góc BAC.
giúp em bài này với ah, em cảm ơn mọi người rất nhiều ( e cần gấp lắm)
Cho tam giác ABC cân tại A .Trên tia đối của tia BC lấy điểm M .Trên tia đối của tia BC lấy N.Sao cho BM=CN.Kẻ BH vuông góc với AM,CK vuông góc với AM
a) CM: Tam giác AMN cân tại A
b)CM :BH=CK và AH=AK
c)CM:HB cắt AC tại O .CM AO là tia p/g của góc BAC và AO vuông góc với BC