Hình vẽ:
Giải:
Ta có: \(AB=\dfrac{BD}{2}\) ( \(A\) là trung điểm của \(BD\) )
Mà \(AB=AC\) ( Vì tam giác \(ABC\) cân tại \(A\) )
\(\Rightarrow AC=\dfrac{BD}{2}\)
Mà \(AC\) là đường trung tuyến của tam giác \(CBD\) ( \(A\) là trung điểm của\(BD \) ).
\(\Rightarrow\Delta CBD\) vuông tại \(C.\)
\(\Rightarrow\widehat{BCD}=90^o\)
Vì AC = AD
\(\Rightarrow\Delta ACD\) cân ại A
\(\Rightarrow\widehat{ACD}=\widehat{ADC}\) (1)
Vì \(\Delta ABC\) cân tại A
\(\Rightarrow\widehat{ABC}=\widehat{ACB}\) (2)
\(\Delta BDC\) có :
\(\widehat{ABC}+\widehat{ACB}+\widehat{DCA}+\widehat{CDA}=180^0\)
Từ (1) và (2)
\(\Rightarrow\widehat{ABC}+\widehat{ADC}=\widehat{ACB}+\widehat{DCA}\)
\(\Rightarrow\left(\widehat{ACB}+\widehat{DCA}\right)\times2=180^0\)
\(\Rightarrow\widehat{ACB}+\widehat{DCA}=180^0\times\dfrac{1}{2}=90^0\)
\(\Rightarrow\widehat{BCD}=90^0\)