a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
=>ΔAHB=ΔAHC
=>HB=HC
b: Xét ΔHDB vuông tại D và ΔHEC vuông tại E có
HB=HC
góc B=góc C
=>ΔHDB=ΔHEC
=>BD=CE
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
=>ΔAHB=ΔAHC
=>HB=HC
b: Xét ΔHDB vuông tại D và ΔHEC vuông tại E có
HB=HC
góc B=góc C
=>ΔHDB=ΔHEC
=>BD=CE
Cho tam giác ABC cân tại A. Kẻ AH vuông góc BC (H thuộc BC).
a/ Chứng minh Tam giác AHB = Tam giác AHC. Từ đó suy ra HB = HC
b/ Biết AH = 8 cm, BC = 12 cm. Tính độ dài AC.
c/ Kẻ HD vuông góc với AB (D thuộc AB), kẻ HE vuông góc với AC (E thuộc AC). Chứng minh Tam giác HDE cân.
Cho tam giác ABC cân tại A. Vẽ BD vuông với AC tại D, CE vuông với AB tại E . Gọi H là giao điểm của BD và CE. Chứng minh rằng: a) BD = CE b) IH vuông góc BC .giúp mik với ạ 😩🥺❤️❤️
Cho tam giác ABC cân có AB=AC=5cm, BC= 8cm . Kẻ AH vuông góc với BC tại H.
a) chứng minh: AH là tia phân giác của A.
b) Tính độ dài AH.
c) Kẻ HD vuông góc với AB ( D thuộc AB), Kẻ HE vuông góc với AC ( E thuộc AC) chứng minh tam giác HDE là tam giác cân.
có vẽ hình ạ
cho tam giác ABC cân tại A, vẽ BH vuông góc với AC tại H, vẽ CK vuông góc với AB tại K A) chứng minh tam giác BHC bằng tam giác CKB B) chứng minh tam giác AHK cân C) chứng minh HK // BC D)gọi O là giao điểm của BH và CK, M là trung điểm của BC.Chứng minh ba điểm A,O,M thẳng hàng
Bài:_ Cho tam giác ABC cân tại A. Kẻ BD vuông góc với AC (D thuộc AC). Kẻ CE vuông góc với AB (E thuộc AB). BD và CE cắt nhau tại I. Là Là a) Cho BC = 5cm, DC = 3cm. Tính độ dài BD. b) Chứng minh rằng BD =CE. c) thẳng AI cắt BC tại H. Chứng minh rằng AI vuông góc với BC tại H.
Cho tam giác aBC vuông tại A , Có góc C =30' . tia phân giác của góc B cắt tại AC tại D . Vẽ DE vuông góc với BC tại E . Qua điểm C vẽ đường thẳng vuông góc với tia BD tại H .
a. Chứng minh : tam giác ABD= tam giác EBD
b. Tính góc DBC và chứng minh : DB=DC
c. So Sánh : HC và HD
BÀI 4 :Cho tam giác ABC cân tại A, vẽ AH vuông góc BC tại H. biết AB = 10cm, BH = 6cm.
1. Tính AH.
2. Chứng minh Δ ABH = Δ ACH.
3.Trên cạnh BA lấy điểm D, CA lấy điểm E sao cho BD = CE. Chứng minh tam giác HDE cân.
4.Chứng minh DE // BC.
Cho tam giác AbC có góc A = 90°, AC>AB, đường cao AH. a) Biết AB=3cm,AC=4cm. Tính BC, AH b) Lấy điểm D thuộc HC sao cho HD=HB. Chứng minh tam giác ABD cân. c) Kẻ CE vuông góc với AD tại E. Chứng minh góc BAd = góc ACE d) Gọi giao điểm của AH và CE là I. Chứng minh ID_|_AC e) Chứng minh CB là phân giác của góc ACI f) Tính góc BIC
Cho tam giác ABC vuông tại A ( AB<AC) tia phân giác của góc B cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BE=BA. Vẽ AH vuông góc với BC tại H. Chứng minh rằng:
a) tam giác ABD= tam giác EBD và AD=ED
b) AH song song với BE