Ta có: AN = BN = \(\dfrac{1}{2}\)AB (N là trung điểm của AB)
AM = CM = \(\dfrac{1}{2}\)AC (M là trung điểm của AC)
Mà AB = AC ( do tam giác ABC cân tại A)
=> AN = BN = AM = CM
Xét tam giác BNC và tam giác CMB:
+ BC chung
+ ^B = ^C (tam giác ABC cân tại A)
+ BN = CM (cmt)
=> Tam giác BNC = tam giác CMB (c-g-c)
=> ^NCB = ^MBC (2 góc tương ứng)
Hay ^KCB = ^KBC
=> Tam giác BKC cân tai K
Xét tam giác ABC: M là trung điểm của AC (gt)
N là trung điểm của AB (gt)
=> MN là đường trung bình của tam giác ABC (định nghĩa đường trung bình trong tam giác)
=> MN // BC (TC đường trung bình trong tam giác)
a) Ta có: \(AN=NB=\dfrac{AB}{2}\)(N là trung điểm của AB)
\(AM=MC=\dfrac{AC}{2}\)(M là trung điểm của AC)
mà AB=AC(ΔABC cân tại A)
nên AN=NB=AM=MC
Xét ΔBNC và ΔCMB có
BN=CM(cmt)
\(\widehat{NBC}=\widehat{MCB}\)(hai góc ở đáy của ΔABC cân tại A)
BC chung
Do đó: ΔBNC=ΔCMB(c-g-c)
b) Xét ΔANC và ΔABM có
AN=AM(cmt)
\(\widehat{NAC}\) chung
AC=AB(ΔABC cân tại A)
Do đó: ΔANC=ΔABM(c-g-c)
⇒\(\widehat{ACN}=\widehat{ABM}\)(hai góc tương ứng)
hay \(\widehat{NBK}=\widehat{MCK}\)
Xét ΔNBK có
\(\widehat{NBK}+\widehat{NKB}+\widehat{BNK}=180^0\)(Định lí tổng ba góc trong một tam giác)(1)
Xét ΔMCK có
\(\widehat{MCK}+\widehat{MKC}+\widehat{CMK}=180^0\)(Định lí tổng ba góc trong một tam giác)(2)
Từ (1) và (2) suy ra \(\widehat{NBK}+\widehat{NKB}+\widehat{BNK}=\widehat{MCK}+\widehat{MKC}+\widehat{CMK}\)
mà \(\widehat{NBK}=\widehat{MCK}\)(cmt)
và \(\widehat{NKB}=\widehat{MKC}\)(hai góc đối đỉnh)nên \(\widehat{BNK}=\widehat{CMK}\)Xét ΔNBK và ΔMCK có \(\widehat{BNK}=\widehat{CMK}\)(cmt)BN=CM(cmt)\(\widehat{NBK}=\widehat{MCK}\)(cmt)Do đó: ΔNBK=ΔMCK(g-c-g)⇒KB=KC(hai cạnh tương ứng)Xét ΔKBC có KB=KC(cmt)nên ΔKBC cân tại K(Định nghĩa tam giác cân)giúp mình nha à mà đề này là đề chuẩn nên không được sửa nha và cảm ơn bạn nào giúp mình trước nhé