+ Vì \(\Delta ABC\) cân tại \(A\left(gt\right)\)
=> \(AB=AC\) (tính chất tam giác cân).
+ Xét 2 \(\Delta\) vuông \(ABH\)\(\) và \(ACK\) có:
\(\widehat{AHB}=\widehat{AKC}=90^0\left(gt\right)\)
\(AB=AC\left(cmt\right)\)
\(\widehat{A}\) chung
=> \(\Delta ABH=\Delta ACK\) (cạnh huyền - góc nhọn).
=> \(\widehat{ABH}=\widehat{ACK}\) (2 góc tương ứng).
Hay \(\widehat{ABI}=\widehat{ACI}.\)
+ Xét 2 \(\Delta\) \(ABI\) và \(ACI\) có:
\(AB=AC\left(cmt\right)\)
\(\widehat{ABI}=\widehat{ACI}\left(cmt\right)\)
Cạnh AI chung
=> \(\Delta ABI=\Delta ACI\left(c-g-c\right)\)
=> \(\widehat{BAI}=\widehat{CAI}\) (2 góc tương ứng).
=> \(AI\) là tia phân giác của \(\widehat{A}\left(đpcm\right).\)
Chúc bạn học tốt!