a) Xét \(\Delta ABH;\Delta ACH\) có :
\(AB=AC\) (tam giác ABC cân tại A)
\(\widehat{ABH}=\widehat{ACH}\) (tam giác ABC cân tại A)
\(AH:chung\)
=> \(\Delta ABH=\Delta ACH\left(c.g.c\right)\)
=> \(\widehat{BAH}=\widehat{CAH}\) (2 góc tương ứng)
b) Sửa lại chút nhé : cho AH = 3cm, BC = 8cm. Tính AC (có gì không đúng thì bạn chia sẻ nhé)
Xét \(\Delta ABC\) cân tại A (gt) có :
\(AH\) là đường cao đồng thời là tia phân giác trong \(\Delta ABC\)
=> AH cũng là đường trung trực trong \(\Delta ABC\)
=> \(BH=HC\)(tính chất đường trung trực)
Nên : \(BH=HC=\dfrac{1}{2}BC=\dfrac{1}{2}.8=4\left(cm\right)\)
Xét \(\Delta AHB\) có :
\(\widehat{AHB}=90^o\left(AH\perp BC-gt\right)\)
=> \(\Delta AHB\) vuông tại H
Ta có : \(AB^2=AH^2+BH^2\) (Định lí PYTAGO)
=> \(AB^2=4^2+3^2=25\)
=> \(AB=\sqrt{25}=5\left(cm\right)\)
Mà có : \(AB=AC\) (gt)
=> \(AC=5cm\left(đct\right)\)
c) Xét \(\Delta AEH;\Delta ADH\) có :
\(\widehat{EAH}=\widehat{DAH}\left(cmt\right)\)
\(AH:chung\)
\(\widehat{AEH}=\widehat{ADH}\left(=90^o\right)\)
=> \(\Delta AEH=\Delta ADH\) (cạnh huyền - góc nhọn)
=> \(AE=AD\) ( 2 cạnh tương ứng)
d) Xét \(\Delta ADE\) có :
\(AD=AE\left(cmt\right)\)
=> \(\Delta ADE\) cân tại A
Ta có : \(\widehat{AED}=\widehat{ADE}=\dfrac{180^o-\widehat{BAC}}{2}\left(1\right)\)
Xét \(\Delta ABC\) cân tại A (gt) có :
\(\widehat{ABC}=\widehat{ACB}=\dfrac{180^o-\widehat{BAC}}{2}\left(2\right)\)
Từ (1) và (2) => \(\widehat{AED}=\widehat{ABC}\left(=\dfrac{180^{^O}-\widehat{BAC}}{2}\right)\)
Mà ta thấy : 2 góc này ở vị trí đồng vị
=> \(\text{ED // BC }\left(đpcm\right)\)