Xét ΔABC cân tại A có AH là đường cao
nên H là trung điểm của BC
Xét ΔEAD có
EH là trung tuyến
EB=2/3HE
=>B là trọng tâm
=>Mlà trung điểm của ED
Xét ΔABC cân tại A có AH là đường cao
nên H là trung điểm của BC
Xét ΔEAD có
EH là trung tuyến
EB=2/3HE
=>B là trọng tâm
=>Mlà trung điểm của ED
Bài 1: Tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Kẻ BH vuông góc với AD. Kẻ CK vuông góc với AE. Chứng minh rằng :
a) Chứng minh: DADE cân và BH = CK
b) ABH = ACK
c) Gọi O là giao điểm của HB và KC. Chứng minh OBC cân.
d) Chứng minh AO là tia phân giác của góc DAE
e) Gọi I là trung điểm của BC. Chứng minh: A, I, O thẳng hàng.
cho tam giác ABC vuông tại A; BD là phân giác của góc B (D thuộc AC). trên tia BC lấy điểm E sao cho BA = BE. a) chứng minh rằng: tam giác ABD = tam giác EBD và DE vuông góc với BE. b) chứng minh: BD là đường trung trực của đoạn tthẳng AE. c) Kẻ AH vuông góc với BC tại H. CHỨNG minh rằng: AD < DH
Cho tam giác ABC vuông tại A, Vẽ đường P/G BD. kẻ DE vuông góc với BC. TRên tia đối của tia AB lấy điểm F sao cho AF=CE. CM
a)BD là đường trung trực của đoạn thẳng AE
Cho tam giác ABC. Gọi M là trung điểm của của BC. Trên tia đối của tia MA lấy điểm D sao cho MD=MA. Kẻ đường cao AH. Trên tia AH lấy điểm E sao cho H là trung điểm AE.
a, CD//AB
b, CD=BE
c, CD vuông góc BD
d, ED//BC
Cho tam giác ABC vuông tại A (AB < AC). Vẽ AD là tia phân giác của góc BAC (D thuộc BC). Trên đoạn AC lấy điểm H sao cho AH = AB.
a) Chứng minh góc ADH = góc ADB
b) Tia HD cắt AB tại E. Chứng minh : tam giác AHE = tam giác ABC và AD ^ EC
c) Gọi G là trung điểm của ED. Tia AD cắt CG tại X. Chứng minh 3.DX < 2.DC
cho tam giác ABC vuông tại A có đường trung tuyến BN . trên tia đối của tia B lấy D sao choND = NB chứng minh a, AB=CD và AB vuông góc với CD b, AD=BC và AD songsong với BC c, góc ABN=góc CBN
Co tam giác ABC vuông tại A Lấy đường trung tuyến Am .Trên tia đối của tia MA lấy điểm D sao cho MD=MA a) tính góc ABD b) chứng minh tam giác ABC = tam giacs BAD c) chứng minh AM =1/2 BC
Cho tam giác ABC cân tại A , có góc A nhỏ hơn 90 độ ,M là trung điểm của đoạn BC
a, Chứng minh M là đường trung trực của đoạn BC
b, Đường trung trực d của AC cắt CB tại D . Chứng minh góc DAC = góc ABC
c, Trên tia đối của AD lấy E sao cho AE=BD . Chứng minh đường trung trực DE đi qua C.
Cho tam giác ABC đều . Trên tia đối các tia AB , BC , CA lấy D , E , F sao cho AD = BE = CF . Chứng minh rằng : tam giác DEF đều . cmr tam giác abc và tam giác def có cùng giao điểm của 3 đg trung trực