a) Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC(ΔBAC cân tại A)
AH chung
Do đó: ΔABH=ΔACH(Cạnh huyền-cạnh góc vuông)
Suy ra: BH=CH(hai cạnh tương ứng)
Xét ΔIHB vuông tại H và ΔIHC vuông tại H có
IH chung
BH=CH(cmt)
Do đó: ΔIHB=ΔIHC(Hai cạnh góc vuông)
Suy ra: IB=IC(hai cạnh tương ứng)
b) Ta có: IB=ID(gt)
mà B,I,D thẳng hàng(gt)
nên I là trung điểm của BD
Ta có: AH+BD
\(=2\cdot AI+2\cdot BI\)
=2(AI+BI)
mà AI+BI>AB(BĐT trong tam giác ABI)
nên \(AH+BD>2AB\)
\(\Leftrightarrow AH+BD>AB+AC\)(đpcm)