cho tam giác abc có 3 góc nhọn nội tiếp đường tròn tâm o bán kính r có tia phân giác góc abc và acb lần lượt cắt đường tròn o tại e và f
CM: OF vuông góc với AB và OE vuông góc với AC
gọi M là giao điểm của OF và AB , N là giao điểm của OE và AC. CM : AMON nội tiếp
cho tam giác ABC nội tiếp đường tròn (O; R) đường kính BC với AB < AC
a) Tính \(\widehat{BAC}\)
b) Vẽ đường tròn (I) đường kính AO cắt AB, AC lần lượt tại H, K. CM: ba điểm H, I, K thẳng hàng
c) Tia OH, OK cắt tiếp tuyến tại A với (O) lần lượt tại D, E. CM: BD + CE = DE
d) CM: đường tròn đi qua ba điểm D, O, E tiếp xúc với BC
Cho tam giác ABC cân tại A. Vẽ đường tròn tâm O bán kính R tiếp xúc với AB,AC tại B,C.Đường thẳng qua điểm m trên BC vuông góc OM cắt tia AB,AC tại D,E
a) CM: 4 điểm O,B,D,M cùng thuộc 1 đường tròn
b) CM: MD=ME
Cho tam giác ABC (AB < AC) có ba góc nhọn nội tiếp đường tròn ( O, R) , AD là đường cao của tam giác ABC và AM là đường kính của đường tròn (O), gọi E là hình chiếu của B trên AM. a) CMR : góc ACM = 90° và BAC=MAC b) CMR : Tứ giác ABDE nội tiếp c) CM : DE // MC
Cho tam giác ABC vuông tại A nội tiếp đường tròn (O, R) có BC là đường kính và AC=R. Kẻ dây AD vuông góc với BC tại H.
1) Tính độ dài các cạnh AB, AH theo R;
2) Chứng minh rằng HA.HD=HB.HC;
3) Gọi M là giao điểm của AC và BD. Qua M kẻ đường thẳng vuông góc với BC cắt BC ở I, cắt AB ở N. Chứng minh ba điểm N, C, D thẳng hàng;
4) Chứng minh AI là tiếp tuyến của đường tròn (O, R).
Bài I: Cho AABC có ba góc nhọn nội tiếp đường tròn tâm O bán kính R. Các phần giác của các góc ABC, JCB lần lượt cắt đường tròn tại E, F.
a) CMR: OF ⊥ AB và OF ⊥ AC
b) Gọi M là giao điểm của của OF và AB; N là giao điểm của OE và AC. CMR: Tứ giác AMON nội tiếp và tính diện tích hình tròn ngoại tiếp tứ giác này.
c) Gọi I là giao điểm của BE và CF; D là điểm đối xứng của I qua BC. CMR: ID 1 MN.
Cho tam giác ABC vuông tại A nội tiếp đường tròn (O;R) có đường kính BC và cạnh AB=R. Kẻ dây AD vuông góc với BC tại H
a) Tính độ dài các cạnh AC,AH và số đo góc B, góc C
b) Chứng minh: AH.HD=HB.HC
c) Gọi M là giao điểm của AC và BD. Qua M kẻ đường thẳng vuông góc với BC cắt BC ở I, căt AC ở N. Chứng minh: C,D,N thẳng hàng
d) Chứng minh: AI là tiếp tuyến của đường tròn (O) và tính AI theo R
cho tam giác ABC nội tiếp đường tròn O đường kính AC. Trên AB lấy D sao cho AD=3AB. tia Dy vuông góc với DC tại D cắt tiếp tuyến Ax của đường tròn (O)tại E. Gọi M là trung điểm của đoạn thẳng CD.Kẻ EI vuông góc với AD tại I