a: Xét ΔABM và ΔACN có
\(\widehat{A}\) chung
AB=AC
\(\widehat{ABM}=\widehat{ACN}\)
Do đó: ΔABM=ΔACN
Suy ra: BM=CN và AM=AN
hay ΔAMN cân tại A
b: Xét ΔABC có
AN/AB=AM/AC
Do đó: MN//BC
a: Xét ΔABM và ΔACN có
\(\widehat{A}\) chung
AB=AC
\(\widehat{ABM}=\widehat{ACN}\)
Do đó: ΔABM=ΔACN
Suy ra: BM=CN và AM=AN
hay ΔAMN cân tại A
b: Xét ΔABC có
AN/AB=AM/AC
Do đó: MN//BC
Cho tam giác ABC cân tại A.Tia phân giác góc B cắt AC tại M, tia phân giác góc C cắt AB tại N
a)Chứng minh tam giác AMN cân và MN//BC
b) Gọi I là trung điểm của BC , E là giao điểm của CN và BM.Chứng minh A,I,E thẳng hàng
. Cho tam giác ABC cân tại A. Trên các cạnh AC, AB lần lượt lấy M, N sao cho AM = AN.
a) Chứng minh tam giác ABM = tam giác ACN .
b) Chứng minh MN // BC.
c) Gọi O là giao điểm của BM và CN. Chứng minh tam giác OBC cân.
Cho tam giác ABC cân tại A. Lấy I là trung điểm BC. Trên tia đối của CB lấy điểm N, trên tia đối của BC lấy điểm M sao cho CN=BM.
a) Chứng minh: AI là tia phân giác góc BAC;
b) Chứng minh AM=AN;
c) Qua B vẽ đường thẳng vuông góc với AB cắt tia AI tại K. Chứng minh KC vuông góc AC.
Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm M, Trên tia đối của tia CB lấy điểm N sao cho BM = CN. Chứng minh rằng: Tam giác AMN cân.
Cho tam giác ABC cân tại A. Trên các cạnh AC, AB lần lượt lấy M, N sao cho AM = AN.
a) Chứng minh BN=CM
b) Gọi O là giao điểm của BM và CN. Chứng minh tam giác OBC cân.
cho tam giác ABC cân tại a N là trung điểm của AB,M là trung điểm của AC .BM giao CN tại K
A ) C/m tam giác BNC = tam giác CMB
B ) C/ m tâm giác BKC cân
C) trên tia đối của MB lấy I / MI = MK chứng minh CI // AK
Cho tam giác ABC cân tại A, gọi M, N lần lượt là trung điểm của AB, AC. Các đường trung trực của AB, AC cắt nhau tại O. a) Chứng minh AD là phân giác của góc BAC. b) Chứng minh tam giác OBC cân c) Chứng minh MN // BC. d) Chứng minh AO vuông góc với MN.