Lời giải:
Kẻ $AH\perp BC$. Vì $ABC$ cân tại $A$ nên đường cao $AH$ đồng thời là đường trung tuyến
$\Rightarrow H$ là trung điểm $BC$
$\Rightarrow BH=BC:2=2$ (cm)
Áp dụng định lý Pitago:
$AH=\sqrt{AB^2-BH^2}=\sqrt{6^2-2^2}=4\sqrt{2}$ (cm)
Diện tích $ABC$:
$S=\frac{AH.BC}{2}=\frac{4\sqrt{2}.4}{2}=8\sqrt{2}$ (cm vuông)
$\cos B = \frac{BH}{AB}=\frac{2}{6}=\frac{1}{3}$
$\Rightarrow \widehat{B}=70,5^0$
$\Rightarrow \widehat{C}=\widehat{B}=70,5^0$
$\widehat{A}=180^0-\widehat{B}-\widehat{C}=180^0-2. 70,5^0=39^0$