a: Xét tứ giác ABDE có
\(\widehat{ADB}=\widehat{AEB}\left(=90^0\right)\)
Do đó: ABDE là tứ giác nội tiếp
hay A,B,D,E cùng thuộc một đường tròn
a: Xét tứ giác ABDE có
\(\widehat{ADB}=\widehat{AEB}\left(=90^0\right)\)
Do đó: ABDE là tứ giác nội tiếp
hay A,B,D,E cùng thuộc một đường tròn
Cho tam giác ABC có đường cao AD và trực tâm H. Gọi I, K lần lượt là trung điểm của HA, HB. Gọi E, F lần lượt là trung điểm của BC, AC. Chứng minh:
a, Bốn điểm E, F, I, K cùng thuộc một đường tròn
b, Điểm D cũng thuộc đường tròn đi qua bốn điểm E, I, F, K
Cho tam giác ABC cân tại A, các đường cao AD và Be cắt nhau tại H. Đường tròn tâm O ngoại tiếp tam giác AHE cắt AB ở F. Chứng minh rằng
a) 2DE = BC
b) DF =DE
c) DE là tiếp tuyến của (O)
d) cho biết DH = 2, HA = 6. Tính độ dài DE.
Cho tam giác ABC có ba góc nhọn (AB<AC) nội tiếp đường tròn (O;R). Ba đường cao AD ; BE; CF cắt nhau tại H
a) Chứng minh bốn điểm B;E;F;C cùng thuộc một đường tròn. Xác định tâm I của đường tròn này
b)Vẽ đường kính AK của đường tròn (O).Chứng minh BHCK là hình bình hành suy ra H,I,K thẳng hàng
Cho tam giác ABC nhọn (AB < AC) , vẽ đường tròn tâm O đường kính BC cắt AB và AC tại D và E, CD cắt BE tại H. a) Chứng minh AH vuông góc BC. b) Chứng minh 4 điểm A, E, H, D cùng thuộc một đường đường tròn, xác định tâm I của đường tròn qua 4 điểm. c) Chứng minh 4 điểm B, C, D, E cùng thuộc 1 đường tròn. Xác định tâm O của đường tròn đi qua 4 điểm d) Chứng minh OI vuông góc với DE
3. Cho tam giác ABC có ba góc nhọn , các đường cao BE và CF cắt nhau tại H. a ) Chứng minh B , F , E , C cùng thuộc một đường tròn , xác định tâm O. b ) Chứng minh A , E , H , F , cùng thuộc một đường tròn , xác định tâm I. c ) Chứng minh : AH vuông BC và OI vuông EF . đường tròn ( O ) có đường Gấp á huhu
Cho tam giác ABC, các đường cao AD,BE,CF. Gọi H là trực tam của tam giác.
a) Chứng minh A, E, H, F cùng nằm trên một đường tròn xác định tâm I.
b) Gọi O là trung điểm BC. Chứng minh OE là tiếp tuyến đường tròn tâm I.
cho tam giác ABC , các đường cao AD, BE
a, chứng minh A,B,D,E thuộc đường tròn
b, so sánh AB,DE
Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O). Ba đường cao BE; CF cắt nhau tại H
a) Chứng minh bốn điểm B;F;E;C cùng thuộc một đường tròn. Xác định tâm I của đường tròn ngoại tiếp
b)Vẽ đường kính AK của đường tròn (O).Chứng minh BHCK là hình bình hành suy ra H,I,K thẳng hàng
Cho tam giác DEF có 2 đường cao EM và FN cắt nhau tại I.Chứng minh rằng:
a. 4 điểm E,M,N,F cùng thuộc 1 đường tròn
b. 4 điểm D,M,I,N cùng thuộc 1 đường tròn