\(S_{DEF}=S_{BDF}+S_{DCE}+S_{AFE}+S_{ABC}=2\left(S_{ABD}+S_{BCE}+S_{AFC}\right)+S_{ABC}=2.\left(S_{ABC}+S_{ABC}+S_{ABC}\right)+S_{ABC}=7.S_{ABC}\)
\(S_{DEF}=S_{BDF}+S_{DCE}+S_{AFE}+S_{ABC}=2\left(S_{ABD}+S_{BCE}+S_{AFC}\right)+S_{ABC}=2.\left(S_{ABC}+S_{ABC}+S_{ABC}\right)+S_{ABC}=7.S_{ABC}\)
Cho tam giác ABC vuông tại A (AB>AC). Kẻ đường cao AH (H thuộc BC). Gọi D là trung điểm của AB. Qua A kẻ đường thẳng vuông góc với CD cắt CD và CB lần lượt tại E và F. Gọi K là hình chiếu vuông góc của D trên BC.
1) Chứng minh rằng các tam giác ADE và CDA đồng dạng với nhau.
2) Chứng minh rằng BD.BC = BE.CD.
Bổ Toán Bổ Đề Về Tính Chất Đường Phân Giác Trong Tam Giác
'' Cho tam giác ABC cân tại đỉnh A. Gọi M là trung điểm của đoạn thẳng BC. Gọi D và E là hai điểm lần lượt thuộc AB và AC sao cho \(\widehat{DME}=\widehat{ABC}\)
a) Chứng minh rằng tam giác BMD đồng dạng với tam giác CEM.
b) Chứng minh rằng DM là tia phân giác của góc \(\widehat{BDE}\).
P/s: Em nhờ quý thầy cô giáo và các bạn yêu toán gợi ý giúp đỡ em tham khảo với ạ!
Em cám ơn nhiều ạ!
Cho tam giác ABC cân tại đỉnh A , có đường cao AH. Gọi M là 1 điểm di động trên cạnh BC. Điểm D và E lần lượt thuộc cạnh AB và AC sao cho tứ giác ADME là hình bình hành. Gọi I là giao điểm của BE và CD.
a) Chứng minh rằng : \(\widehat{DMI}=\widehat{AME}\)
b) Chứng minh rằng đường thẳng MI luôn luôn đi qua 1 điểm cố định .
P/s: Em xin phép nhờ quý thầy cô giáo và các bạn yêu toán giúp đỡ, em cám ơn nhiều lắm ạ!
Cho hình bình hành ABCD. Qua A kẻ một đường thẳng bất kì cắt BD, DC, BC lần lượt tại E, F, G.
a. Chứng minh rằng: tam giác DAE đồng dạng tam giác BFE
b. AB . AG = . AF . DG
c. AE^2 = EF . EG
d. Tích BF . DG không đổi
e. Cho AB = 10 cm, AD = 9 cm, DG = 6 cm. Tính độ dài BG và CM và 9 lần dt tam giác BEA = 25 lần dt tam giác DEG
Giúp mình vs *-*
Cho hình vuông ABCD có AB = a, hai đường chéo cắt nhau tại O. Trên hai cạnh AB, BC lần lượt lấy hai điểm E và G sao cho AE= BG. Gọi H là giao điểm của tia AG và tia DC, I là giao điểm của tia OG và đoạn thẳng BH.
1) Chứng minh rằng: AOGE là tam giác vuông cân.
ChoΔABC. Lấy P ở miền ngoài tam giác, thuộc miền trong ∠Acx (Cx là tia đối của tia CB). Từ P kẻ các đường vuông góc với các đường thẳng AC, BC, CD ( D là trung điểm của AB), chúng lần lượt cắt đường cao CH tại X, Y, Z. Chứng minh rằng:
a) ΔPZY ∼ Δ CDB;
b)ΔPXZ ∼ ΔCAD;
c) YZ = ZX.
Cho tam giác ABC vuông tại A, đường cao AH. Gọi E, F lần lượt là hình chiếu của H trên AB và AC
a) Chứng minh rằng ΔAEF ΔACB
b) Cho AH = 4,8cm, BC = 10 cm. Tính SAEF?
c) Lấy điểm I đối xứng với H qua AB. Từ B kẻ đường vuông góc với BC cắt AI ở K. Chứng minh rằng KC, AH, EF đồng quy
Cho tam giác abc vuông tại A ah là dường cao
a)chứng minh tam giác abc đồng dạng tam giác abh,AB^2=BH.BC
b)gọi d e lần lượt là trung điểm ah,bh.Chứng minh tam giác abe đồng dạng tam giác acd
c) cd giao ae tại k;ed giao ac tại k;kh giao ed tại i.CHỨNG MINH DI.EF=DF.EI
Cho ∆ABC vuông tại A có đường cao AD gọi E,F lần lượt là hình chiếu vuông góc của D lên cạnh AB,AC a) chứng minh tam giác ∆BDA ~ ∆BAC b)Chứng minh AE . AB = AF . AC c) Chứng minh: EF³= BE.CF.BC