Xét ΔBAC có \(\cos ACB=\dfrac{CA^2+CB^2-AB^2}{2\cdot CA\cdot CB}\)
\(\Leftrightarrow3^2+5^2-AB^2=\dfrac{1}{2}\cdot2\cdot3\cdot5=15\)
\(\Leftrightarrow AB^2=19\)
hay \(AB=\sqrt{19}\left(cm\right)\)
Xét ΔBAC có \(\cos ACB=\dfrac{CA^2+CB^2-AB^2}{2\cdot CA\cdot CB}\)
\(\Leftrightarrow3^2+5^2-AB^2=\dfrac{1}{2}\cdot2\cdot3\cdot5=15\)
\(\Leftrightarrow AB^2=19\)
hay \(AB=\sqrt{19}\left(cm\right)\)
Cho ∆ABC có AC = 3cm, BC = 5cm, góc BCA = 60°. Tính AB
Trong mặt phẳng xoy cho A (4;6) B(1;4) C(7;3/2) a tính độ dài các cạnh AB AC và BC của tam giác ABC B tính góc giữa hai vec tơ (AB BC) C chứng minh rằng tam giác ABC vuông tại A
Tam giác ABC có AB = 6cm, AC = 8cm, BC = 11cm
a) Tính \(\overrightarrow{AB}.\overrightarrow{AC}\) và chứng tỏ rằng tam giác ABC có góc A tù
b) Trên cạnh AB lấy điểm M sao cho AM = 2cm và gọi N là trung điểm của cạnh AC. Tính \(\overrightarrow{AM}.\overrightarrow{AN}\) ?
Cho tam giác ABC cân (AB = AC). Gọi H là trung điểm của cạnh BC. D là hình chiếu vuông góc của H trên cạnh AC, M là trung điểm của đoạn HD. Chứng minh rằng AM vuông góc với BD ?
Cho tam giác đều ABC cạnh a. Tính \(\overrightarrow{AB}.\overrightarrow{AC}\) và \(\overrightarrow{AB}.\overrightarrow{BC}\) ?
Cho tam giác ABC có AB = 5cm, BC = 7cm, CA = 8cm
a) Tính \(\overrightarrow{AB}.\overrightarrow{AC}\) rồi suy ra giá trị của góc A ?
b) Tính \(\overrightarrow{CA}.\overrightarrow{CB}\) ?
Trong mặt phẳng với hệ tọa độ Đê - các vuông góc Oxy cho tam giác ABC có AB = AC; \(\widehat{BAC}=90^0\); biết M (1;-1) là trung điểm cạnh BC và \(G\left(\frac{2}{3};0\right)\) là trọng tâm tam giác ABC. Tìm tọa độ các đỉnh A, B, C
Tam giác ABC có góc A=60o , AB = 5, AC = 8, Tính tích vecto AB→.BC→
Cho tam giác đều ABC có cạnh bằng a, gọi G là trọng tâm. Tính T: \(\overrightarrow{GA}.\overrightarrow{BC}+\overrightarrow{GB}.\overrightarrow{CA}+\overrightarrow{GC}.\overrightarrow{AB}\)