a: Xét ΔIAB và ΔICD có
IA=IC
góc AIB=góc CID
IB=ID
Do đo: ΔIAB=ΔICD
b: Ta có: ΔIAB=ΔICD
nên \(\widehat{IBA}=\widehat{IDC}\)
mà \(\widehat{IDC}>\widehat{IBC}\)
nên \(\widehat{IBA}>\widehat{IBC}\)
c: AB+BC=CD+BC>BD>2BI
nên \(BI< \dfrac{AB+BC}{2}\)
a: Xét ΔIAB và ΔICD có
IA=IC
góc AIB=góc CID
IB=ID
Do đo: ΔIAB=ΔICD
b: Ta có: ΔIAB=ΔICD
nên \(\widehat{IBA}=\widehat{IDC}\)
mà \(\widehat{IDC}>\widehat{IBC}\)
nên \(\widehat{IBA}>\widehat{IBC}\)
c: AB+BC=CD+BC>BD>2BI
nên \(BI< \dfrac{AB+BC}{2}\)
Cho tam giác ABC có AB<BC, trung tuyến BI, trên tia đối của tia IB lấy điểm D sao cho ID=IB. Chứng minh rằng:
a)Tam giác IAB = tam giác ICD.
b)Góc IBA > góc IBC.
c)C/m S ICD=1/2Sabc
làm câu cuối giúp mik với
Cho tam giác ABC. Trên tia đối của AC lấy D sao cho AD= AC. Trên tia đối của tia AB lấy E sao cho AE= AB. Nối D với E
a) Chứng minh tam giác ABC= tam giác ADE
b) Gọi M là trung điểm của BC, N là trung điểm của DE. Chứng minh AM=AN
Cho tam giác ABC cân AB = AC. Lấy E và F trên cạnh AB và AC sao cho BE=CF
a)Chứng minh tam giác AEF là tam giác cân
b)Chứng minh góc AEF = góc ACB
c) Lấy điểm K trên tia đối của tia CB sao cho CK=EF. Chứng minh tam giác FBK cân tại F
d)Chứng minh BC+EF < 2 BF
(3.0 điểm). Cho tam giác ABC vuông tại A, có AB = 3cm, BC = 5cm. a) Tính độ dài AC ? b) Gọi M là trung điểm của AC, Trên tia đối của tia MB lấy điểm D sao cho MB = MD. Chứng minh rằng: ABM = CDM. Từ đó suy ra AB = CD. c) Chứng minh 2.BM < AB + BC.
Cho tam giác ABC, điểm O nằm trong tam giác, tia BO cắt cạnh AC tại I. a) So sánh OA và IA + IO, từ đó suy ra OA + OB < IA + IB; b) Chứng minh: OA + OB < CA + CB; c) Chứng minh: (AB+AC+BC) /2 < OA + OB + OC < AB + BC + CA
Cho tam giác ABC có AB =AC. Gọi D và E là hai điểm trên BC sao cho BD=DE=EC và AD=AE.
A) Chứng minh góc EAB= góc DAC.
B) Gọi M là trung điểm của BC. Chứng Minh rằng AM là tia phân giác của góc DAE
C) Gỉa sử góc DAE = 60 độ , có nhận xét gì về các góc của tam giác AED
Cho tam giác ABC vuông tại A có AB=AC. Gọi N là trung điểm của cạnh BC. a)Chứng minh tam giác ANB=tam giác ANC b)Chứng minh góc ANB =góc ANC và AN vuông góc với BC c) Kẻ ND vuông góc với AC( D thuộc AC). Tính số đo của góc AND
Cho tam giác ABC, điểm M bất kì nằm trong tam giác.
a) So sánh MB + MC với BC.
b) Chứng minh 2(MA + MB + MC) > AB + BC + CA.
c) Gọi I là giao điểm của đường thẳng BM và cạnh AC. So sánh MC và MI + IC, từ đó chứng minh MB + MC < IB + IC
d) So sánh IB và IA + AB, từ đó chứng minh IB + IC < AB + AC
e) Chứng minh MB + MC < AB + AC
f) Chứng minh MA + MB + MC < AB + BC + AC
Cho tam giác ABC, điểm M bất kì nằm trong tam giác.
a) So sánh MB + MC với BC.
b) Chứng minh 2(MA + MB + MC) > AB + BC + CA.
c) Gọi I là giao điểm của đường thẳng BM và cạnh AC. So sánh MC và MI + IC, từ đó chứng minh MB + MC < IB + IC
d) So sánh IB và IA + AB, từ đó chứng minh IB + IC < AB + AC
e) Chứng minh MB + MC < AB + AC
f) Chứng minh MA + MB + MC < AB + BC + AC