b: Xét ΔBED và ΔBEC có
BE chung
\(\widehat{EBD}=\widehat{EBC}\)
BD=BC
Do đó: ΔBED=ΔBEC
Suy ra: ED=EC
c: Ta có: BI\(\perp\)DC
AH\(\perp\)DC
Do đó: BI//AH
b: Xét ΔBED và ΔBEC có
BE chung
\(\widehat{EBD}=\widehat{EBC}\)
BD=BC
Do đó: ΔBED=ΔBEC
Suy ra: ED=EC
c: Ta có: BI\(\perp\)DC
AH\(\perp\)DC
Do đó: BI//AH
cho tam giac ABC(AB<AC) tren tia BA lay diem D sao cho BD=BC noi c voi D tia phan giac cua goc B cat canh AC va CD theo thu tu o E va I
tam giac BID=BIC
ED=EC
ke AH vuong goc voi CD tai H chung minh AH//BI
biet so do goc ABC bang 70 tinh so do goc BCD va DAH
Cho tam giác ABC (AB < AC). Trên tia BA lấy điểm D sao cho BD = BC. Nối C với D. Tia phân giác của góc B cắt cạnh AC và CD theo thứ tự ở E và I.
a) Chứng minh tam giác BID = BIC
b) Chứng minh ED = EC
c) Kẻ AH vuông góc với CD tại điểm H, chứng minh AH // BI.
d) Biết số đo góc ABC bằng 70 o , tính số đo góc BCD và DAH.
Tam giác ABC cân tại A. Trên cạnh BC lấy điểm D, trên tia đối của tia CB, lấy điểm E sao cho BD=CE. Từ D kẻ vuông góc với BC cắt AB ở M, từ E kẻ vuông góc với BC cắt AC tại N
a, Chứng minh MD=NE
b, MN giao DE tại I. CM I là trung điểm của DE
c, Từ C kẻ đường vuông góc với AC, từ B kẻ đường vuông góc với AB sao cho chúng cắt nhau tại O. chứng minh rằng đường thẳng vuông góc với MN tại I luôn đi qua 1 điểm cố định khi D thay đổi trên cạnh BC
Cho tam giác ABC vuông tại A.Kẻ AH vuông góc với BC (H€BC).Tia phân giác góc HAC cắt cạnh BC ở D và tia phân giác HAB cắt cạnh BC ở E. Chứng minh rằng AB + AC = BD + EC. Mn giải hộ e câu này vs ạk:)))
Bài 4: Cho tam giác ABC vuông tại B ( AB < BC ), phân giác AE ( E thuộc BC ). Từ E kẻ ED vuông góc AC ( D thuộc AC )
a) C/m tam giác ADE = tam giác ABE
b) So sánh EB và EC
c) Kẻ CH vuông AE ( H thuộc AE ). Trên tia đối của HA lấy điểm F sao cho HF = HE. C/m tam giác CEF cân và BD // CH
d) Gọi O là giao điểm của CE và AB. C/m E,D,O thẳng hẳng
Cho tam giác ABC vuông tại A (AB<AC) , O là trung điểm của BC , trên tia đối của tia OA lấy điểm K sao cho OA = OK . Vẽ AH vuông góc với BC tại H . Trên tia HC lấy HD = HA . Đường vuông góc với BC tại D cắt AC tại E .
1. Chứng minh tam giác ABC và tam giác CKA bằng nhau
2. Chứng minh AB = AE
3. Gọi M là trung điểm của BE . Tính số đo góc CHM
Cho tam giác ABC vuông tại A có AB=16cm, AC=12cm. a) tính BC. b) vẽ AH vuông góc với BC tại H, trên HB lấy E sao cho HE=HC. chứng minh AC=AE. c) Trên tia đối tia HA lấy D sao cho DH=AH. chứng minh ED vuông góc AB. d) chứng minh CH<AH
cho tam giác abc vuông tại a đường cao ah abc có ab<ac. Trên cạnh AC lấy điểm E sao cho AB = AE. Tia phân giác của góc A cắt BC tại D A trên tia đối của tia BA lấy điểm F sao cho BF = EC. Chứng minh BE song song FC