Hình học lớp 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Cuồng Sơn Tùng M-tp

Cho tam giác ABC ( AB<AC) có AM là phân giác của góc A . ( M thuộc BC ) . Trên AC lấy D sao cho AD = AB .

a) CM: BM=MD

b) gọi K là giao điểm của AB và DM . CM : tam giác DAK = tam giác BAC

c) CM: tam giác AKC cân

d) so sánh : BM và CM

Nguyễn Ngân Hà
16 tháng 7 2017 lúc 7:28

Ta có hình vẽ: A B C K M 1 2 1 1 2 1 2 D 2 1 a) Xét 2 \(\Delta ABM\)\(\Delta ADM\) có:

\(\widehat{A1}\) = \(\widehat{A2}\) (gt)

AB = AD (gt)

AM là cạnh chung

=> \(\Delta ABM\) = \(\Delta ADM\) ( c-g-c)

=> BM = DM (2 cạnh tương ứng)

b) Xét 2 \(\Delta DAK\)\(\Delta BAC\) có:

\(\widehat{A}\) là góc chung

AB = AD (gt)

\(\widehat{B2} = \widehat{D1}\) (vì \(\Delta ABM=\Delta ADM\) )

=> \(\Delta DAK=\Delta BAC\) ( g-c-g)

=> AK = AC (2 cạnh tương ứng)

c) Xét \(\Delta AKC\) có:

AK = AC (cmt)

=>\(\Delta AKC\) cân tại A

d) Ta có: \(\widehat{K} = \widehat{K1} + \widehat{K2} \)

\(\widehat{C} = \widehat{C1} + \widehat{C2}\)

\(\widehat{K} = \widehat{C}\) (vì\(\Delta AKC\) cân tại A)

\(\widehat{K2} = \widehat{C2}\) (vì\(\Delta DAK=\Delta BAC\))

=> \(\widehat{K1} = \widehat{C1}\)

=> \(\Delta KMC\) cân tại M

=> MK = MC

Ta lại có: \(\widehat{B1} = \widehat{A} + \widehat{C2}\) (góc ngoài của \(\Delta ABC\)

hay \(\widehat{B1} = \widehat{A} + \widehat{K2}\) (vì\(\Delta AKC\) cân tại A)

=> \(\widehat{B1} > \widehat{K2}\)

đối diện với \(\widehat{B1}\) là cạnh MK

đối diện với \(\widehat{K2}\) là cạnh MB

=> MK > MB (quan hệ giữa góc và cạnh đối diện)

mặt \(\ne\) MK = MC (cmt)

=> MC > MB (đpcm)


Các câu hỏi tương tự
Huỳnh Thị Thu Uyên
Xem chi tiết
Quên Mất Tên Rồi
Xem chi tiết
Nguyễn Ngọc Khả Hân
Xem chi tiết
nguyễn ngọc trang
Xem chi tiết
nguyễn minh trang
Xem chi tiết
NGUYỄN ĐỨC TÍN
Xem chi tiết
Có lẽ ... Yêu 1 người .....
Xem chi tiết
Nguyễn Hải Băng
Xem chi tiết
NGUYỄN ĐỨC TÍN
Xem chi tiết