Câu 4. (3,0 điểm) Cho tam giác ABC nhọn nội tiếp (O), hai đường cao BD và CE của tam giác ABC cắt nhau tại H. Vẽ DK vuông góc với AB (K thuộc AB), gọi F là trung điểm của ED, tia BF cắt (O) tại I (khác B),
a) Chứng minh tứ giác BEDC nội tiếp
b) Chứng minh rằng BK.BA = BF.BI
c) Chứng minh rằng, hai đường thẳng AH và ID cắt nhau tại một điểm nằm trên (O).
Cho tam giác nhọn ABC nội tiếp đường tròn (O). Gọi H là giao điểm hai đường cao BD và CE của tam giác ABC (D ∈ AC, E ∈ AB). ) Đường thẳng AO cắt ED và BD lần lượt tại K và M.
A. Tứ giác ADHE nội tiếp trong một đường tròn.
B. AK.AM = AD^2
C. ˆBAH=ˆOAC
Cho tam giác ABC (AB<AC) nội tiếp đường tròn (O), các đường cao BD và CE cắt nhau tại H. Gọi F và K lần lượt là giao điểm của AH với BC, DE
a) Chứng minh: Tứ giác ADHE nội tiếp đường tròn và xác định tâm I của đường tròn.
b) Chứng minh: DB là phân giác của góc EDF và \(\dfrac{KH}{HF}=\dfrac{DK}{DF}\)
c) Đường thẳng CE cắt đường tròn tại điểm thứ hai N, NF cắt đường tròn tại điểm thứ hai P, gọi Q là trung điểm của DF. Chứng minh A, P, Q thẳng hàng
Cho tam giác ABC nhọn, AB < AC nội tiếp đường tròn (O). Các đường cao BD và CE của tam giác ABC cắt nhau tại H. Gọi K là giao điểm của DE và CB.
a) CMR: Tứ giác BCDE nội tiếp
b) C/m : KB.KC = KE.KD
c) Gọi M là trung điểm của BC, AK cắt đường tròn (O) tại điểm thứ 2 là N. C/m : 3 điểm M, H, N thẳng hàng
Cho tam giác ABC (AB < AC) nội tiếp đường tròn (O). Các đường cao AD,BE,CF của tam giác ABC cắt nhau tại H
a) Chứng minh tứ giác BCEF nội tiếp
b) Gọi I là trung điểm của cạnh BC, K là điểm đối xứng của H qua I. Chứng minh ba điểm A,O,K thẳng hàng
Ai giải giúp mình câu b được không. Mình xin cảm ơn rất nhiều
Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn tâm O. Các đường cao AD,BE,CF của tam giác ABC cắt nhau tại H
a) Chứng minh : tứ giác AEHF, BFEC nội tiếp đường tròn
b) Đường thẳng AO cắt đưởng tròn tâm O tại K khác điểm A . Gọi I là giao điểm của 2 đường thẳng HK và BC . Chứng minh I là trung điểm của đoạn BC
c) Tính : AH/AD + BH/BE + CH/CF
Cho tam giác ABC(AB<AC) mở ba góc nhọn nội tiếp đường tròn(O).Hai đường cao BE,CF cắt nhau tại H. Gọi K là trung điểm em của đoạn thẳng BC. Đường thẳng OA cắt đường thẳng BC tại điểm I,đường thẳng EF cắt đường thẳng AH tại điểm P.Chứng minh đường thẳng song song với đường thẳng IP
cho tam giác ABC nhọn nội tiếp đường tròn (O;R) , 2 đường cao BE và CF của tam giác ABC cắt nhau tại H . đường thẳng AH cắt BD tại D và cắt (O;R) tại điểm M
a, chứng minh BC là p/g góc EMB
b, gọi I là tâm đường tròn ngoại tiếp tứ giác AEHF . chứng minh IE là tiếp tuyến của đường tròn ngoại tiếp tam giác BCE
c, khi 2 điểm B,C cố định và điểm A di động trên (O;R) nhứng vẫn thỏa mãn tam giác ABC nhọn . chứng minh OA vuông góc với EF . xác định vị trí A để tổng DE+EF+FD đtặ giá trị nhỏ nhất
cho tam giác abc (ab < ac) nội tiếp đường tròn (o;r), m là trung điển của bc, tia oa cắt đường tròn (o) tại k ( k khác a ) đường cao cc' và bb' cắt nhau tại h. a) chứng minh m,h,k thẳng hàng b) Chứng minh om = 1/2 ah