a) Xét ΔABE vuông tại E và ΔACF vuông tại F có
\(\widehat{BAE}\) chung
Do đó: ΔABE∼ΔACF(g-g)
a) Xét ΔABE vuông tại E và ΔACF vuông tại F có
\(\widehat{BAE}\) chung
Do đó: ΔABE∼ΔACF(g-g)
Cho tam giác ABC ( AB <AC ) hai đường cao BE và CF gặp nhau tại H , các đường thẳng kẻ từ B song song với CF và từ C song song với BE gặp nhau tại D . Chứng minh
a, Tam giác ABE đồng dạng với tam giác ACF
b , AE.CB=AC.EF
Cho tam giác ABC (AB<AC), hai đường cao BE và CF gặp nhau tại H, các đường thẳng kẻ từ B song song với CF và từ C song song với BE gặp nhau tại D. Chứng minh:
a. tam giác ABE đồng dạng tam giác ACF
b. AE.CB=AB.EF
Cho tam giác ABC nhọn.AM,BE,CF là các đường cao của tam giác,H là trực.Từ C kẻ đường thẳng song song với BE,từ B kẻ đường thẳng song song với CF,hai đường thẳng này cắt nhau tại K
a)Chứng minh AF.AB=AE.AC
b)Chứng minh △AEF∼△ACB
c)Gọi I là trung điểm của BC.Chứng minh H,I,K thẳng hàng
Cho tam giác ABC có 3 góc nhọn. Các đường cao lần lượt là AD,BE,CF cắt nhau tại H. Gọi I là trung điểm của AH; J là trung điểm của BC. Chứng minh: a) tam giác AEH đồng dạng với tam giác ADC và AE.AC=AH.AD b) AE.AC=AF.AB và tam giác AEF đồng dạng tam giác ABC c) tam giác HFB đồng dạng với tam giác HEC và HE.HB=HF.HC d) EH là tia phân giác của góc DEF e) BF.BA + CE.CA=BC2 f) HD/AD + HE/BE + HF/CF = 1 g) góc IEG = 90
Cho tam giác ABC có 3 góc nhọn. Các đường cao lần lượt là AD,BE,CF cắt nhau tại H. Gọi I là trung điểm của AH; J là trung điểm của BC. Chứng minh: a) tam giác AEH đồng dạng với tam giác ADC và AE.AC=AH.AD b) AE.AC=AF.AB và tam giác AEF đồng dạng tam giác ABC c) tam giác HFB đồng dạng với tam giác HEC và HE.HB=HF.HC d) EH là tia phân giác của góc DEF e) BF.BA + CE.CA=BC2 f) HD/AD + HE/BE + HF/CF = 1 g) góc IEj = 90
Cho tam giác ABC, một đường thẳng song song với BC cắt AB,AC lần lượt tại D,E và cắt đường thẳng kẻ từ C song song với AB tại F. Gọi giao điểm AC và BF là S
a, CMinh: AB.CE=AC.CF
b,CMinh:SC2=SA.SE
cho tam giác ABC vuông tại A (AC>AB). vẽ đường cao AH. trên tia đối của tia BC lấy điểm K sao cho KH=HA. qua K kẻ đường thẳng song song với AH, cắt đường thẳng AC tại P.
a,chứng minh tam giác AKC đồng dạng với tam giác BPC
b, gọi Q là trung điểm của BP. Chứng minh tam giác BHQ đồng dạng với tam giác BPC
c, tia AQ cắt BC tại I. chứng minh AH/HB - BC/IB = 1
Cho tam giác ABC vuông tại A có đường cao AH
a) CM tam gíac ABH đồng dạng vs tam giác ABC
b)Từ B kẻ đường thẳng song song vs AH và cắt AC tại I. CM tam giác ABI đồng dạng vs tam giác ABH
c) Kẻ AK vuông góc vs BI. CM tam giác AKB đồng dạng vs tam giác ABI
d) CM tam giác BKH đồng dạng vs tam giác BCI
cho tam giác ABC có AD là phân giác góc BAC , D thuộc BC
a) cho biết AB = 10cm , AC = 12cm , BD = 4cm . tính độ dài BC
b) qua D kẻ đường thẳng song song với AB , cắt AC tại E. Gọi M là trung điểm của AB , AD , cắt EM tại I , BE cắt MD tại K. Chứng minh rằng : IE/IM = KD/KM. từ đó chứng minh IK song song ED.