cho 3 số thực a,b,c >0 thỏa mãn a+b+c=2016
Chứng minh \(\dfrac{a}{a+\sqrt{2016a+bc}}+\dfrac{b}{b+\sqrt{2016b+ac}}+\dfrac{c}{c+\sqrt{2016c+ab}}\le1\)
Câu 1 : a, CMR số x0=\(\sqrt{2+\sqrt{2+\sqrt{3}}}-\sqrt{6-3\sqrt{2+\sqrt{3}}}\) là 1 nghiệm của pt x4-16x2+32=0
b, Cho x2016+y2016+z2016=x2017+y2017+z2017=1 Tính giá trị biểu thức P= x10+y10+z2017
Câu 2 : a, Cho m,n là 2 số tự nhiên nguyên tố cùng nhau . Hãy tìm ước chung lớn nhất của 2 số A= m+n và B= m2+n2
b,giải pt \(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}=10x-x^2-24\)
Câu 3 : cho các số thực dương a,b,c thảo mãn abc=1 . Tìm gtnn của bth S=\(\frac{a}{a+2b}+\frac{b}{b+2c}+\frac{c}{c+2a}\)
cho 3 số thực dương a,b,c thỏa mãn \(\dfrac{a}{1+a}+\dfrac{b}{1+b}+\dfrac{c}{1+c}=2\) .Chứng minh:
\(\dfrac{\sqrt{a}+\sqrt{b}+\sqrt{c}}{2}\ge\dfrac{1}{\sqrt{a}}+\dfrac{1}{\sqrt{b}}+\dfrac{1}{\sqrt{c}}\)
Cho a, b, c là số thực dương thỏa mãn: a+b+c=1. Tìm GTLN của biểu thức: \(P=\sqrt{\dfrac{ab}{c+ab}}+\sqrt{\dfrac{bc}{a+bc}}+\sqrt{\dfrac{ac}{b+ac}}\)
Cho các số thực không âm a. b. c thỏa mãn a + b + c = 3
TÌm GTLN của P = \(a\sqrt{b}+b\sqrt{c}+c\sqrt{a}-\sqrt{abc}\)
Cho a,b,c là ba số thực dương thỏa mãn \(a+b+c=2\). Yìm GTLN của biểu thức
\(P=\dfrac{ab}{\sqrt{ab+2c}}+\dfrac{bc}{\sqrt{bc+2a}}+\dfrac{ca}{\sqrt{ac+2b}}\)
cho a,b,c dương thỏa mãn \(a+b+c=5\) và \(\sqrt{a}+\sqrt{b}+\sqrt{c}=3\). CMR: \(\dfrac{\sqrt{a}}{a+2}+\dfrac{\sqrt{b}}{b+2}+\dfrac{\sqrt{c}}{c+2}=\dfrac{4}{\sqrt{\left(a+2\right)\left(b+2\right)\left(c+2\right)}}\)
Cho các số dương a, b, c thỏa mãn: \(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}=\sqrt{2011}\). CMR: \(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}++\dfrac{c^2}{a+b}\ge\dfrac{1}{2}\sqrt{\dfrac{2011}{2}}\)
Cho các số dương a, b, c thỏa mãn: \(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}=\sqrt{2011}\). CMR: \(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\ge\dfrac{1}{2}\sqrt{\dfrac{2011}{2}}\)