Bài 1: Số phức

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Shin Jihyun

cho số phức z = a + bi( a,b thuộc R) thoả mãn |z+1+i|=|z+2i| và P=|z-2-3i|+|z+1| đạt giá trị nhỏ nhất. Tính P=a+2b

Mysterious Person
17 tháng 7 2018 lúc 13:49

ta có : \(\left|z+1+i\right|=\left|z+2i\right|\Leftrightarrow\left(a+1\right)^2+\left(b+1\right)^2+a^2+\left(b+2\right)^2\)

\(\Leftrightarrow b=a-1\)

khí đó : \(P=\left|z-2-3i\right|+\left|z+1\right|=\sqrt{\left(a-2\right)^2+\left(b-3\right)^2}+\sqrt{\left(a+1\right)^2+b^2}\)

\(\Leftrightarrow P=\sqrt{\left(a-2\right)^2+\left(a-4\right)^2}+\sqrt{\left(a+1\right)^2+\left(a-1\right)^2}\ge\sqrt{\left(2a-1\right)^2+\left(2a-5\right)^2}\)

dấu "=" xảy ra khi \(\dfrac{a-2}{a+1}=\dfrac{a-4}{a-1}=k>0\) \(\Leftrightarrow a\in\varnothing\) \(\Rightarrow\) không có giá trị của \(P=a+2b\)