Cho \(sin^2x+\left(2m-2\right)sinxcosx-\left(m+1\right)cos^2x=m\)
a, Giải khi m=-2
b, Tìm m để phương trình có nghiệm
Số giá trị nguyên của m để pt có nghiệm trên \([\frac{\pi}{-4};\frac{\pi}{4}]\) \(2\sin^2x-\sin X\cos X-M\cos^2x=1\)
1. Tính tổng các nghiệm trên đoạn [0,4pi] của phương trình 3cosx-1=0
2. Giải phương trình
a/ \(\frac{1}{cos^2x}-2tanx-4=0\)
b/\(1+sinxcosx\left(x+\frac{pi}{2}\right)=sin\left(x-\frac{pi}{2}\right)\)
c/ \(\frac{1}{sin^2x}+3tan^2x=5\)
d/ \(\frac{2}{1+cot^2x}=1-cosx\)
Cho phương trình (1-Sinx)(Cos2x + 3mSinx+Sinx-1)=\(mCos^2x\) (m là tham số). Tìm các giá trị thực của m để phương trình có 6 nghiệm khác nhau thuộc khoảng \(\left(-\dfrac{\Pi}{2};2\Pi\right)\)
Cho phương trình cos2x-(2m+1)cosx+m+1=0
a, GPT với m=3/2
b, Tìm m để pt có nghiệm thuộc [pi/2;3pi/2]
Cho phương trình cos2x-(2m+1)cosx+m+1=0
a, GPT với m=3/2
b, Tìm m để pt có nghiệm thuộc [pi/2;3pi/2]
Giải phương trình sau:
a) $\tan ^2x+4\cos ^2x+7=4\tan x+8\cot x$
b) $6\sin ^2x+2\cos ^2x-2\sqrt{3}\sin 2x=14\sin \left(x-\frac{\pi }{6}\right)$
1, cho phương trình \(sin2x-\left(2m+\sqrt{2}\right)\left(sinx+cosx\right)+2m\sqrt{2}+1=0\) tìm các giá trị m để phương trình có đúng 2 nghiệm \(x\in\left(0;\dfrac{5\Pi}{4}\right)\)
2,tìm tất cả các giá trị thực của tham số m để phương trình \(cos2x+\left(2m+1\right)sinx-m-1=0\) có đúng 2 nghiệm thuộc khoảng \(\left(\dfrac{\Pi}{2};\dfrac{3\Pi}{2}\right)\)
3, cho phương trình \(cos^2x-2mcosx+6m-9=0\) tìm các giá trị m để phương trình có nghiệm thuộc khoảng \(\left(-\dfrac{\Pi}{2};\dfrac{\Pi}{2}\right)\)
Tính tổng tất cả các giá trị \(m\) nguyên để phương trình \(mcos2x=\dfrac{cos^4x-sin^4x}{sinx}\) có đúng 4 nghiệm phân biệt thuộc \(\left(0;2\pi\right)\).
A. 1
B. 2
C. 3
D. 0
Giải các phương trình sau :
a) \(2\cos^2x-3\cos x+1=0\)
b) \(25\sin^2x+15\sin2x+9\cos^2x=25\)
c) \(2\sin x+\cos x=1\)
d) \(\sin x+1,5\cot x=0\)