\(sinx+cosx=m\Rightarrow\left(sinx+cosx\right)^2=m^2\)
\(\Rightarrow1+2sinx.cosx=m^2\Rightarrow sinx.cosx=\frac{m^2-1}{2}\)
Ta co:
\(tan^2x+cot^2x=tan^2x+2tanx.cotx+cot^2x-2\)
\(=\left(tanx+cotx\right)^2-2=\left(\frac{sinx}{cosx}+\frac{cosx}{sinx}\right)^2-2=\left(\frac{sin^2x+cos^2x}{sinx.cosx}\right)^2-2\)
\(=\frac{1}{\left(sinx.cosx\right)^2}-2=\frac{1}{\left(\frac{m^2-1}{2}\right)^2}-2=\frac{4}{m^4-2m^2+1}-2\)