Bài 6: Hệ thức Vi-et và ứng dụng

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hien Le

Cho pt x^2 - 4x + m = 0

Tìm m để pt có 2 nghiệm x1 x2 t/m x1^3 + x2^3 - 5(x1^2 + x2^2) =26

Kiêm Hùng
13 tháng 4 2020 lúc 20:33

\(pt:x^2-4x+m=0\)

\(\Delta=\left(-4\right)^2-4.1.m=16-4m\)

Để pt có 2 nghiệm phân biệt thì \(16-4m>0\Leftrightarrow-4m>-16\Leftrightarrow m< 4\)

Theo hệ thức Vi-et:

\(\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=m\end{matrix}\right.\)

Ta có: \(x^3_1+x_2^3-5\left(x^2_1+x^2_2\right)=26\Leftrightarrow\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)-5\left[\left(x_1+x_2\right)^2-2x_1x_2\right]=26\Leftrightarrow4^3-3.m.4-5\left[4-2m\right]=26\Leftrightarrow64-12m-20+10m=26\Leftrightarrow-2m=-18\Leftrightarrow m=9\left(KTM\right)\)

Vậy không có giá trị m thõa mãn

Nguyễn Việt Lâm
13 tháng 4 2020 lúc 20:35

\(\Delta'=4-m\ge0\Leftrightarrow m\le4\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=m\end{matrix}\right.\)

\(x_1^3+x_2^3-5\left(x_1^2+x_2^2\right)=26\)

\(\Leftrightarrow\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)-5\left(x_1+x_2\right)^2+10x_1x_2=26\)

\(\Leftrightarrow64-12m-5.4^2+10m=26\)

\(\Leftrightarrow-2m=-18\Rightarrow m=9\)


Các câu hỏi tương tự
Cạc NGU
Xem chi tiết
Hoàng Văn Anh
Xem chi tiết
Lê Anh Quân
Xem chi tiết
Phác Kiki
Xem chi tiết
Thạch Hằng
Xem chi tiết
Thanh Trần
Xem chi tiết
Đỗ Phương Dung
Xem chi tiết
Maneki Neko
Xem chi tiết
Quân Hoàng Hồng
Xem chi tiết