8.3. Tìm m để pt: x2 - 2(m+4)x + m2 +7 =0 có hai nghiệm phân biệt x1, x2 thỏa mãn: |x1| + |x2| = 12.
8.4. Tìm m để pt: x2 + 2(m+5)x + m2 +6 =0 có hai nghiệm phân biệt x1, x2 thỏa mãn: |x1| + |x2| = 16.
8.5. Cho pt: x2 - 2(m+3)x + m2 +5 =0
a) Giải pt khi m = 2.
b) Tìm m đẻ pt có hai nghiệm phân biệt x1, x2 thỏa mãn: |x1| + |x2| = 10.
8.3/ Để phương trình có 2 nghiệm phân biệt thì \(\Delta'=\left(m-4\right)^2-\left(m^2+7\right)=-8m+9>0\) \(\Leftrightarrow m< \frac{9}{8}\)
Theo định lý \(viete:\left\{{}\begin{matrix}x_1+x_2=2\left(m+4\right)\\x_1x_2=m^2+7>0\forall x\in R\end{matrix}\right.\)
Ta có: \(\left|x_1\right|+\left|x_2\right|=12\Leftrightarrow x_1^2+x^2_2+2\left|x_1x_2\right|=144\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2+2x_1x_2=\left(x_1+x_2\right)=144\)
\(\Leftrightarrow2\left(m+4\right)=144\Leftrightarrow m+4=72\Leftrightarrow m=68\) (T/m)
KL: ...........
8.4/ Để phương trình có 2 nghiệm phân biệt thì \(\Delta'=\left(m+5\right)^2-\left(m^2+6\right)=10m+19>0\Leftrightarrow x>-\frac{19}{10}\)
Theo định lý viete, ta có: \(\left\{{}\begin{matrix}x_1+x_2=-2\left(m+5\right)\\x_1x_2=m^2+6>0\forall x\in R\end{matrix}\right.\)
Ta có: \(\left|x_1\right|+\left|x_2\right|=16\Leftrightarrow x_1^2+x^2_2+2\left|x_1x_2\right|=256\Leftrightarrow\left(x_1+x_2\right)=256\)
\(\Leftrightarrow-2\left(m+5\right)=256\Leftrightarrow m+5=-128\Leftrightarrow m=-133\) (không t/m)
Vậy khôn tồn tại m thõa mãn ycbt
8.5/ Thay $m=2$ vào ta được
a) \(x^2-10x+9=0\Leftrightarrow\left(x-1\right)\left(x-9\right)=0\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-9=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=9\end{matrix}\right.\)
b) Để phương trình có 2 nghiệm phân biệt thì \(\Delta'=\left(m+3\right)^2-\left(m^2+5\right)=6m+4>0\Leftrightarrow m>-\frac{2}{3}\)
Theo định lý viete, ta có: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+3\right)\\x_1x_2=m^2+5>0\forall x\in R\end{matrix}\right.\)
Khi đó: \(\left|x_1\right|+\left|x_2\right|=10\Leftrightarrow x_1^2+x_2^2+2x_1x_2=100\Leftrightarrow\left(x_1+x_2\right)^2=100\Leftrightarrow x_1+x_2=10\Leftrightarrow2\left(m+3\right)=10\Leftrightarrow m=2\)(T/M)
KL: .............