Xét phương trình (1) có: \(\Delta=\left(-2\right)^2-4\left(m-1\right)=4-4m+4=8-4m\)
Để phương trình (1) có 2 nghiệm \(\Leftrightarrow\Delta\ge0\Leftrightarrow8-4m\ge0\Leftrightarrow m\le2\)
Áp dụng hệ thức Vi-ét ta có:
\(\left\{{}\begin{matrix}x_1+x_2=2\\x_1.x_2=m-1\end{matrix}\right.\)
Theo đề bài ta có:
\(x_1^2+x_2^2=4m\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=4m\)
\(\Leftrightarrow4-2m+2=4m\)
\(6m=6\Leftrightarrow m=1\)(tmđk)
Vậy để pt có 2 nghiệm \(x_1,x_2\) thỏa mãn \(x_1^2+x_2^2=4m\) thì m=1