Với m=1 thì:
\(x^2+4x=0\)
\(\Leftrightarrow x\left(x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+4=0\end{matrix}\right.\)
\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=0\\x=-4\end{matrix}\right.\)
Với m=1 thì:
\(x^2+4x=0\)
\(\Leftrightarrow x\left(x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+4=0\end{matrix}\right.\)
\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=0\\x=-4\end{matrix}\right.\)
Cho phương trìn x^2-(3m-1)x+2m^2+2m=0 (1)
a) giải phương trình với m = 1
b) tìm giá trị của m để pt (1) có 2 nghiệm phân biệt x1, x2 sao cho \(\left|x_1-x^{ }_2\right|=2\)
cho pt x^2 - (m+6) x + 3m +9=0
1, giải pt khi m =2
2, tìm tất cả các giá trị của m để pt nhận x=1+√2 là 1 nghiệm
3, giả sử pt có 2 nghiệm x1, x2 . c/m giá trị của biểu thức x1^2 + (m+6)x2 - m^2 - 9m là 1 hằng số ko phụ ∈ vào m
Cho PT: \(2x^2-\left(m+1\right)x+m^2-m=0\). Tìm m để PT có 2 nghiệm x1, x2 sao cho biểu thức: A=(2\(x_1\)+1).(2\(x_2\)+1) có giá trị nhỏ nhất
cho pt x2+2x+m-1=0(*), trg đó m là tham số
a, giải pt (*) khi m = -2
b, tìm m để pt (*) có 2 nghiệm phân biệt x1và x2 thảo mãn điều kiện x1=2x2
Cho pt (m +1)x2 - (2m +1)x + m-1=0 (1) , m là tham số . Tìm các giá trị của tham số m để pt (1) có hai nghiệm phản biệt x1 , x2 thỏa mãn x12 + x22 - 2010.x1.x2 =2013
ho pt : \(x^2-2\left(m-1\right)x+2m-3=0\)
Tìm m để pt trên có no x1,x2 tm \(x1^2-2x2=7\)
tìm các giá trị của tham số m để phương trình x2-2(m-1)x+m2=0 có hai nghiệm phân biệt x1,x2 thỏa mãn hệ thức (x1-x2)2+6m = x1-2x2
a) Cho pt x2-2mx+x2-2m+4=0 (1). Tìm điều kiện của m để pt (1) có 2 nghiệm không âm X1,X2 sao cho biểu thức P=\(\sqrt{X1}+\sqrt{X2}\) đạt giá trị nhỏ nhất
b) cho parabol (P):y=x2 và đường thẳng (d):y=2(m+1)x-m2. tìm tất cả các giá trị của m để đường thẳng (d) cắt (P) tại hai điểm phân biệt A=(x1+y1) và B(x2,y2) thỏa mãn (x1-m)2+x2=3m
1. Giaỉ pt
x^2 - 3x^2 - 4=0
2. Cho pt: x^2 - 6x + 2m - 3 = 0(1) với m là tham số
a) Giaỉ pt khi m=-2
b) Tìm các giá trị của m để pt (1) có 2 nghiệm x1 , x2 thỏa mãn x21.x22 + x21.x22 = 24