Lời giải:
Ta thấy:
$\Delta=(m+3)^2-8m=m^2-2m+9=(m-1)^2+8>0$ với mọi $m\in\mathbb{R}$
Do đó pt luôn có nghiệm với mọi $m$
Với $x_1,x_2$ là 2 nghiệm của pt. Áp dụng định lý Viet:
\(\left\{\begin{matrix} x_1+x_2=\frac{m+3}{2}\\ x_1x_2=\frac{m}{2}\end{matrix}\right.\)
\(A=|x_1-x_2|=\sqrt{(x_1-x_2)^2}=\sqrt{(x_1+x_2)^2-4x_1x_2}\)
\(=\sqrt{\frac{(m+3)^2}{4}-2m}=\frac{1}{2}\sqrt{m^2-2m+9}\)
\(=\frac{1}{2}\sqrt{(m-1)^2+8}\geq \frac{1}{2}\sqrt{8}=\sqrt{2}\)
Vậy $A_{\min}=\sqrt{2}$. Giá trị này đạt tại $m=1$