\(=\dfrac{x-\sqrt{x}+1-x+1}{\sqrt{x}-1}\cdot\dfrac{x-\sqrt{x}+\sqrt{x}}{\sqrt{x}-1}\)
\(=\dfrac{-\sqrt{x}+2}{\left(\sqrt{x}-1\right)^2}\cdot x\)
\(=\dfrac{x-\sqrt{x}+1-x+1}{\sqrt{x}-1}\cdot\dfrac{x-\sqrt{x}+\sqrt{x}}{\sqrt{x}-1}\)
\(=\dfrac{-\sqrt{x}+2}{\left(\sqrt{x}-1\right)^2}\cdot x\)
1. \(\left(\dfrac{\sqrt{x}}{\sqrt{x}+2}-\dfrac{4}{x+2\sqrt{x}}\right):\left(1+\dfrac{1}{\sqrt{x}}\right)\)
Rút gọn biểu thức A
rút gọn A
A = \(\left(\dfrac{2}{x-\sqrt{x}}+\dfrac{\sqrt{x}+1}{\sqrt{x}}-\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}+1}{2\sqrt{x}-x}\)
Rút gọn D
D = \(\left(\dfrac{1}{\sqrt{x}}+\dfrac{\sqrt{x}}{\sqrt{x}+1}\right).\dfrac{\sqrt{x}}{x+\sqrt{x}}\)
Bài 1: Cho A=\(\left(\dfrac{x-y}{\sqrt{x}-\sqrt{y}}+\dfrac{\sqrt{x^3}-\sqrt{y^3}}{y-x}\right):\dfrac{\left(\sqrt{x}-\sqrt{y}\right)^2+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\)với x≥0; y≥0; x≠y
a) Rút gọn A
b) Chứng minh A≥0
Bài 2:Cho A= \(\dfrac{x\sqrt{x}-1}{x-\sqrt{x}}-\dfrac{x\sqrt{x}+1}{x+\sqrt{x}}+\left(\sqrt{x}-\dfrac{1}{\sqrt{x}}\right).\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}+\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\right)\)
với x>0; x≠1
a) Rút gọn A
b)Tìm x để A=6
cho biểu thức M = \(\left(\sqrt{x}-\dfrac{1}{\sqrt{x}}\right).\left(\dfrac{\sqrt{x}-1}{\sqrt{x}}+\dfrac{1-\sqrt{x}}{x+\sqrt{x}}\right)\) . Khi x > 0 ; x≠1.
Rút gon biểu thức M
1. A= \(\left(\dfrac{\sqrt{x}}{\sqrt{x}+2}-\dfrac{4}{x+2\sqrt{x}}\right):\left(1+\dfrac{1}{\sqrt{x}}\right)=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\)
Chứng minh: A<1
RÚT GỌN
\(\left(1+\dfrac{x+\sqrt{x}}{\sqrt{x}+1}\right)\left(1-\dfrac{x-\sqrt{x}}{\sqrt{x}-1}\right)\)
\(K=\left[\dfrac{x+3\sqrt{x}+2}{x+\sqrt{x}-2}-\dfrac{x+\sqrt{x}}{x-1}\right]:\left[\dfrac{1}{\sqrt{x}+1}+\dfrac{1}{\sqrt{x}-1}\right]\)
a,Rút gọn K
b,Tính K khi x=\(24+\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)
c,Tìm x để \(\dfrac{1}{K}-\dfrac{\sqrt{x}+1}{8}\)≥1
Rút gọn
A=\(\left(\dfrac{x\sqrt{x}-1}{x-\sqrt{x}}-\dfrac{x\sqrt{x}+1}{x+\sqrt{x}}\right):\dfrac{2\left(x-2\sqrt{x}+1\right)}{x-1}\)
với x>0 và x\(\ne1\)