\(log_{\sqrt{2}}^2x+3log_2x+log_{\dfrac{1}{2}}x=2\)
\(\Leftrightarrow4log_2^2x+3log_2x-log_2x-2=0\)
\(\Leftrightarrow2log_2^2x+log_2x-1=0\)
Đặt \(log_2x=t\)
\(\Rightarrow2t^2+t-1=0\)
\(log_{\sqrt{2}}^2x+3log_2x+log_{\dfrac{1}{2}}x=2\)
\(\Leftrightarrow4log_2^2x+3log_2x-log_2x-2=0\)
\(\Leftrightarrow2log_2^2x+log_2x-1=0\)
Đặt \(log_2x=t\)
\(\Rightarrow2t^2+t-1=0\)
Cho phương trình \(5^x+m=log_5\left(x-m\right)\) với m là tham số. Có bao nhiêu giá trị nguyên của \(m\in\left(-20;20\right)\) để phương trình đã cho có nghiệm
Cho phương trình \(\left(4log_2^2x+log_2x-5\right)\sqrt{7^x-m}=0\). Có bao nhiêu giá trị thực của tham số m để phương trình đã cho có đúng hai nghiệm phân biệt
Cho phương trình log2(10x) - 2mlog10xx - log(10x2)=0 . Gọi S là tập chứa tất cả các giá trị nguyên của m thuộc [-10;10] để phương trình đã cho có đúng 3 nghiệm phân biệt . Số phần tử của tập S là
Cho phương trình: \(\left(x^2-1\right).log^2\left(x^2+1\right)-m\sqrt{2\left(x^2-1\right)}.log\left(x^2+1\right)+m+4=0\). Có bao nhiêu giá trị nguyên của tham số m thuộc [-10;10] để phương trình đã cho có 2 nghiệm phân biệt thỏa mãn \(1\le|x|\le3\)
Cho bất phương trình \(8^x+3x4^x+\left(3x^2+2\right)2^x\le\left(m^3-1\right)x^3+2\left(m-1\right)x\). Số các giá trị nguyên của tham số m để phương trình trên có đúng năm nghiệm nguyên dương phân biệt là?
Giải thích cho mình dòng bôi vàng ở dưới, mình cảm ơn nhiều ạ♥
a)Xác định điểm I thuộc đồ thị (C) của hàm số đã cho biết rằng hoành độ của điểm I là nghiệm của Phương trình f’’(x)= 0.
b)Viết công thức chuyển hệ tọa độ trong phép tịnh tiến vectơ OI và viết Phương trình của đường cong với hệ tọa độ IXY. Từ đó suy ra bằng I là tâm đối xứng đường cong (C).
c)Viết phương trình tiếp tuyến của đường cong (C) tại điểm I đối với hện tọa độ Oxy. Chứng minh rằng trên khoảng (-∞;1) đường cong (C) nằm phía dưới tiếp tuyến tại I của (C) và trên khoảng (1; +∞) đường cong (C) nằm phía trên tiếp tuyến đó.
cho hàm số \(f\left(x\right)=x^3+2x-5^m\). có bao nhiêu giá trị nguyên của m thuộc đoạn [-6;6] để bất phương trình f(f(x)) \(\ge\) x đúng vs mọi x thuộc (2;6)
cho \(0< m\ne1\). gọi (a;b) là tập hợp các giá trị của m để bất phương trình \(\log_m\left(1-8m^{-x}\right)\ge2\left(1-x\right)\) có hữu hạn nghiệm nguyên. tính b - a
Giải phương trình:
1. \(x^x=2\)
2. \(x^2=2^x\)