Ta có: \(f'\left(x\right)=3x^2+2\ge2;\forall x\)
Đặt \(g\left(x\right)=f\left(f\left(x\right)\right)-x\Rightarrow g'\left(x\right)=f'\left(x\right).f'\left(f\left(x\right)\right)-1\ge2.2-1>0;\forall x\)
\(\Rightarrow g\left(x\right)\) đồng biến trên R
\(\Rightarrow\min\limits_{\left[2;6\right]}g\left(x\right)=g\left(2\right)=f\left(f\left(2\right)\right)-2\)
Ta cần tìm m để \(f\left(f\left(2\right)\right)-2\ge0\)
Đặt \(5^m=t\Rightarrow f\left(2\right)=12-t\)
\(\left(1\right)\Leftrightarrow\left(12-t\right)^3+2\left(12-t\right)-t-2\ge0\)
\(\Leftrightarrow\left(10-t\right)\left(t^2-26t+175\right)\ge0\)
\(\Rightarrow t\le10\)
\(\Rightarrow5^m\le10\Rightarrow m\le log_510\)