Gọi (P):y=x2-2mx+m+3 (D):y=x+2
Cho S là điểm thấp nhất của đồ thị hàm số (P)
xs=\(-\dfrac{b}{2a}=-\dfrac{-2m}{2.1}\)=m
yS=-delta/4=\(-\dfrac{b^2-4ac}{4a}=-\dfrac{\left(-2m\right)^2-4\left(m+3\right)}{4}=-\dfrac{4m^2-4m-12}{4}\)=-m2+m+3
Vậy tọa độ đỉnh là S(m;-m2+m+3)
Theo đề bài thì S thuộc (D) khi yS=xS+2
thế vào ta có -m2+m+3=m+2
tương đương: m2=1 suy ra m=1 (nhận) hoặc m=-1 (loại) vì m>0
Vậy hàm số (P):y=m2-2x+4