Cho phương trình x2 - mx + 2m - 5 = 0 . Tìm m để phương trình có nghiệm x1 ; x2 thỏa mãn A = \(\frac{x_1.x_2}{x_1+x_2+2}\) có giá trị nguyên .
Bài 2 : Cho đường thẳng (d) : y = ( m - 2 )x + m +3 .
a, Tìm giá trị của m để các đường thẳng ( d1) : y = -x + 2 , (d2 ) : y = 2x - 1 và đường thẳng (d) đồng quy
b, Tìm điểm cố định mà đường thẳng (d) luôn đi qua với mọi m .
Mn ơi mn giải giúp em với ạ ! em cảm ơn ạ
1.
\(\Delta=m^2-4\left(2m-5\right)=\left(m-4\right)^2+4>0;\forall m\)
Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=2m-5\end{matrix}\right.\)
Để biểu thức đề bài xác định \(\Rightarrow m\ne-2\)
\(A=\frac{x_1x_2}{x_1+x_2+2}=\frac{2m-5}{m+2}=2-\frac{9}{m+2}\)
\(A\in Z\Rightarrow\frac{9}{m+2}\in Z\Rightarrow m+2=Ư\left(9\right)\)
\(\Rightarrow m+2=\left\{-9;-3;-1;1;3;9\right\}\)
\(\Rightarrow m=\left\{-11;-5;-3;-1;1;7\right\}\)
2.
Hệ pt tọa độ giao điểm A của d1 và d2: \(\left\{{}\begin{matrix}x+y=2\\-2x+y=-1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\) \(\Rightarrow A\left(1;1\right)\)
Để 3 đường thẳng đồng quy \(\Leftrightarrow\) d qua A
\(\Leftrightarrow1=\left(m-2\right).1+m+3\Rightarrow2m=0\Rightarrow m=0\)
b/ Gọi \(B\left(x;y\right)\) là điểm cố định mà d luôn đi qua
\(\Leftrightarrow y=\left(m-2\right)x+m+3\) ; \(\forall m\)
\(\Leftrightarrow m\left(x+1\right)+\left(-2x-y+3\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+1=0\\-2x-y+3=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-1\\y=5\end{matrix}\right.\)
Vậy d luôn đi qua \(B\left(-1;5\right)\)