a/ Bạn tự giải
b/ Để phương trình có 2 nghiệm xác định:
\(\left\{{}\begin{matrix}\Delta=25-4m\ge0\\x_1+x_2=5>0\\x_1x_2=m\ge0\end{matrix}\right.\) \(\Rightarrow0\le m\le\frac{25}{4}\)
\(x_1\sqrt{x_2}+x_2\sqrt{x_1}=6\)
\(\Leftrightarrow x_1^2x_2+x_2^2x_1+2x_1x_2\sqrt{x_1x_2}=36\)
\(\Leftrightarrow\left(x_1+x_2\right)x_1x_2+2x_1x_2\sqrt{x_1x_2}=36\)
\(\Leftrightarrow5m+2m\sqrt{m}=36\)
Đặt \(\sqrt{m}=a\ge0\)
\(\Rightarrow2a^3+5a^2-36=0\)
\(\Leftrightarrow\left(a-2\right)\left(2a^2+9a+18\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=2\\2a^2+9a+18=0\left(vn\right)\end{matrix}\right.\) \(\Rightarrow m=a^2=4\)