Cho phương trình: \(x^2-2mx+m^2-m+1=0\left(1\right);\)
a) Giải phương trình khi m=2.
b) Gọi x1, x2 là hai nghiệm của phương trình (1). Tìm m để x1, x2 là hai nghiệm của phương trình (1) thỏa mãn: \(x1^2+2mx2-3x1x2-3=0;\)
AI GIẢI NHANH GIÙM Ạ!!!
Bài 3: cho phương trình bậc hai x^2-(m+1)x+m=0
a) chứng tỏ rằng phương trình luôn có nghiệm với mọi m
b) tìm m để phương trình có hai nghiệm x1, x2 sao cho x1^2+x2^2+3x1x2=5
a Tìm m để phương trình \(x^2-\left(2m+1\right)x+m^2+1=0\)
có hai nghiệm phân biệt trong đó nghiệm này
gấp đôi nghiệm kia
b Tìm m để phương trình \(x^2-2mx+m-3=0\) có hai nghiệm \(x_1,x_2\) thỏa mãn \(x_1+2x_2\) =1
c Tìm m để phương trình \(x^2-2mx+\left(m-1\right)^3=0\)
có hai nghiệm trong đó nghiệm này là bình
phương của nghiệm kia .
d Tìm m để phương trình \(2x^2-\left(m+1\right)x+m+3=0\) có hai nghiệm sao cho hiệu hai nghiệm bằng 1.
cho phương trình \(x^2-\left(4m-1\right)x-4m=0\) (x là ẩn số)
a) chứng minh phương trình luôn có hai nghiệm x1, x2 với mọi giá trị của m
b) tính tổng và tích của hai nghiệm của phương trình theo m
c) gọi x1, x2 là 2 nghiệm của phương trình, tìm m để: \(x_1^2+x_2^2-x_1.x_2=13\)
Cho hệ phương trình:
\(\left\{{}\begin{matrix}2x+my=-5\\x-3y=2\end{matrix}\right.\)
a) Tìm m để hệ phương trình có nghiệm duy nhất, vô nghiệm, vô số nghiệm
b) Với giá trị nào của m thì hệ phương trình có nghiệm duy nhất thỏa mãn x+2y=1
Câu 1 : Cho hai hàm số y= \(\dfrac{1}{2}\) x2 (P) và y = x+4 (d)
a. Vẽ đồ thị hàm số P
b. Tìm tọa độ giao điểm của (d) và (P)
Câu 2 : Cho phương trình bậc nhất hai ẩn x: x2 - 2mx + 2m - 1 = 0 (1)
a. Giari phương trình khi m=2
b. Với giá trị nào của m thì phương trình (1) có nghiệm
Câu 3 : Cho phương trình x2 - x - 12 = 0 . Chứn tỏ rằng phương trình có 2 nghiệm phân biệt x1 , x2 . Không phãi giải phương trình hãy tính x1 + x2 ; \(\dfrac{1}{x_1}\) +\(\dfrac{1}{x_2}\)
cho đường thẳng (d) có phương trình:
\(\left(m+1\right)x+\left(m-2\right)y=3\) (d) ( m là tham số)
Tìm m để (d) cắt 2 trục tọa độ và tạo thành tam giác có diện tích bằng \(\dfrac{9}{2}\)
cho phương trình bậc hai \(x^2-2\left(m-1\right)x+2m-4=0\) (m là tham số )
với \(x_1,x_2\)là nghiệm của phương trình . Tìm giá trị của m để biểu thức : \(B=\left|x_1-x_2\right|\) đạt giá trị nhỏ nhất
b) Hệ phương trình mx + y = 3, 4x + my = 6 có nghiệm thỏa mãn điều kiện x > 1 y > 0