\(\Delta'=\left(m+4\right)^2-\left(m^2-8\right)=8m+24\ge0\Rightarrow m\ge-3\)
Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+4\right)\\x_1x_2=m^2-8\end{matrix}\right.\)
a/ \(A=x_1^2+x_2^2-3x_1x_2=\left(x_1+x_2\right)^2-5x_1x_2\)
\(=4\left(m+4\right)^2-5\left(m^2-8\right)\)
\(=-m^2+32m+104=360-\left(m-16\right)^2\le360\)
\(A_{max}=360\) khi \(m=16\)
\(B=\left(x_1+x_2\right)^2-3x_1x_2\)
\(=4\left(m+4\right)^2-3\left(m^2-8\right)\)
\(=m^2+32m+88=\left(m+3\right)\left(m+29\right)+1\ge1\)
\(\Rightarrow B_{min}=1\) khi \(m=-3\)
b/ Từ Viet: \(\left\{{}\begin{matrix}\frac{x_1+x_2-8}{2}=m\\x_1x_2+8=m^2\end{matrix}\right.\)
\(\Rightarrow\left(\frac{x_1+x_2-8}{2}\right)^2=x_1x_2+8\)
Đây là hệ thức liên hệ 2 nghiệm ko phụ thuộc m (bạn có thể rút gọn thêm)