Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Thế Hiếu

tìm m để phương trình \(x^2+\left(2-m\right)x+m-3=0\) có hai nghiệm phân biệt thỏa mãn \(\left|x_1\right|+x_2^2=2\)

Đặng Khánh
1 tháng 6 2021 lúc 21:51

Để phương trình có 2 nghiệm phân biệt

\(\Delta=\left(2-m\right)^2-4.1.\left(m-3\right)>0\Leftrightarrow m^2-4m+4-4m+12>0\)

\(\Leftrightarrow m^2-8m+16>0\Leftrightarrow\left(m-4\right)^2>0\Leftrightarrow m-4\ne0\Leftrightarrow m\ne4\)

Thấy : \(1+\left(2-m\right)+m-3=0\)

-> phương trình có nghiệm là 1

Th1 : \(x_1=1;x_2=\dfrac{c}{a}=m-3\)

\(\left|x_1\right|+x_2^2=2\Leftrightarrow\left|1\right|+\left(m-3\right)^2=2\)

\(\Leftrightarrow\left(m-3\right)^2=1\Leftrightarrow\)\(\left\{{}\begin{matrix}m-3=1\\m-3=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=4\left(L\right)\\m=2\left(C\right)\end{matrix}\right.\)

TH2 : \(x_1=\dfrac{c}{a}=m-1;x_2=1\)

\(\Leftrightarrow\left|m-1\right|+1^2=2\Leftrightarrow\left|m-1\right|=1\)

hoàn toàn giống với th1.

Vậy \(m=2\)


Các câu hỏi tương tự
Nguyễn Thế Hiếu
Xem chi tiết
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
ngọc linh
Xem chi tiết
nguyen ngoc son
Xem chi tiết
nguyen ngoc son
Xem chi tiết
Big City Boy
Xem chi tiết
nguyen ngoc son
Xem chi tiết
ta thi ngoc anh
Xem chi tiết