\(\Delta'=m^2+2m+1-4m=\left(m-1\right)^2\ge0\)
Phương trình luôn có nghiệm
Theo Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=4m\end{matrix}\right.\)
\(A=2x_1^2+2x_2^2+4x_1x_2-4x_1x_2-x_1x_2\)
\(A=2\left(x_1+x_2\right)^2-5x_1x_2\)
\(A=8\left(m+1\right)^2-20m\)
\(A=8m^2-4m+8=8\left(m-\frac{1}{4}\right)^2+\frac{15}{2}\ge\frac{15}{2}\)
\(\Rightarrow A_{min}=\frac{15}{2}\) khi \(m-\frac{1}{4}=0\Leftrightarrow m=\frac{1}{4}\)