ĐKXĐ: \(x\ge0\)
Pt luôn có 1 nghiệm \(x=0\)
Xét \(mx^2+2x-m+1=0\) (1)
Để pt đã cho có 1 nghiệm pb \(\Leftrightarrow\left(1\right)\) có đúng 1 nghiệm dương
- Với \(\left[{}\begin{matrix}m=0\\m=1\end{matrix}\right.\) không thỏa mãn
- Với \(m\ne\left\{0;1\right\}\)
\(\Delta'=m^2-m+1=\left(m-\frac{1}{2}\right)^2+\frac{3}{4}>0\) \(\forall m\)
Để (1) có đúng 1 nghiệm dương \(\Leftrightarrow\left(1\right)\) có 2 nghiệm trái dấu
\(\Leftrightarrow m\left(1-m\right)< 0\Leftrightarrow0< m< 1\)