Chương I - Căn bậc hai. Căn bậc ba

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Huyền Trâm

Cho phương trình . Dùng Vi-ét để tìm nghiệm x2 rồi tìm giá trị của m

a, \(4x^2+3x-m^2+3m=0\) ( \(x\)1 = -2)

b, \(3x^2-2(m-3)x+5=0\) ( \(x\)1 = \(\dfrac{1}{3}\) )

Akai Haruma
4 tháng 7 2019 lúc 17:52

Lời giải:

a) Theo định lý Vi-et:

\(\left\{\begin{matrix} x_1+x_2=\frac{-3}{4}\\ x_1x_2=\frac{-m^2+3m}{4}\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} -2+x_2=\frac{-3}{4}\\ (-2)x_2=\frac{-m^2+3m}{4}\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x_2=\frac{5}{4}\\ (-2)x_2=\frac{-m^2+3m}{4}\end{matrix}\right.\)

\(\Rightarrow \frac{-m^2+3m}{4}=(-2).\frac{5}{4}=\frac{-10}{4}\)

\(\Rightarrow -m^2+3m=-10\)

\(\Leftrightarrow m^2-3m-10=0\Leftrightarrow (m-5)(m+2)=0\Rightarrow \left[\begin{matrix} m =5\\ m=-2\end{matrix}\right.\)

b)

Theo định lý Vi-et \(\left\{\begin{matrix} x_1+x_2=\frac{2(m-3)}{3}\\ x_1x_2=\frac{5}{3}\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} \frac{1}{3}+x_2=\frac{2(m-3)}{3}\\ \frac{1}{3}x_2=\frac{5}{3}\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} \frac{1}{3}+x_2=\frac{2(m-3)}{3}\\ x_2=5\end{matrix}\right.\)

\(\Rightarrow \frac{2(m-3)}{3}=\frac{1}{3}+5=\frac{16}{3}\)

\(\Rightarrow 2(m-3)=16\Rightarrow m=11\)

Akai Haruma
18 tháng 6 2019 lúc 11:49

Lời giải:

a) Theo định lý Vi-et:

\(\left\{\begin{matrix} x_1+x_2=\frac{-3}{4}\\ x_1x_2=\frac{-m^2+3m}{4}\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} -2+x_2=\frac{-3}{4}\\ (-2)x_2=\frac{-m^2+3m}{4}\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x_2=\frac{5}{4}\\ (-2)x_2=\frac{-m^2+3m}{4}\end{matrix}\right.\)

\(\Rightarrow \frac{-m^2+3m}{4}=(-2).\frac{5}{4}=\frac{-10}{4}\)

\(\Rightarrow -m^2+3m=-10\)

\(\Leftrightarrow m^2-3m-10=0\Leftrightarrow (m-5)(m+2)=0\Rightarrow \left[\begin{matrix} m =5\\ m=-2\end{matrix}\right.\)

b)

Theo định lý Vi-et \(\left\{\begin{matrix} x_1+x_2=\frac{2(m-3)}{3}\\ x_1x_2=\frac{5}{3}\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} \frac{1}{3}+x_2=\frac{2(m-3)}{3}\\ \frac{1}{3}x_2=\frac{5}{3}\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} \frac{1}{3}+x_2=\frac{2(m-3)}{3}\\ x_2=5\end{matrix}\right.\)

\(\Rightarrow \frac{2(m-3)}{3}=\frac{1}{3}+5=\frac{16}{3}\)

\(\Rightarrow 2(m-3)=16\Rightarrow m=11\)


Các câu hỏi tương tự
Hải Yến Lê
Xem chi tiết
Hải Yến Lê
Xem chi tiết
Đặng Tuyết Đoan
Xem chi tiết
MInemy Nguyễn
Xem chi tiết
Hải Yến Lê
Xem chi tiết
Xuân Dinh
Xem chi tiết
Nguyệt Trần
Xem chi tiết
Hải Yến Lê
Xem chi tiết
Lê Hương Giang
Xem chi tiết