Theo Viet: \(\left\{{}\begin{matrix}a+b=1\\ab=-\frac{1}{2}\end{matrix}\right.\)
\(M=\frac{\left(a+2\right)\left(a-1\right)+\left(b+2\right)\left(b-1\right)}{\left(a-1\right)\left(b-1\right)}=\frac{a^2+b^2+a+b-4}{ab-\left(a+b\right)+1}=\frac{\left(a+b\right)^2-2ab+a+b-4}{ab-\left(a+b\right)+1}=\frac{1+1+1-4}{-\frac{1}{2}-1+1}=2\)
\(N=\frac{a^2+b^2}{\left(ab\right)^2}=\frac{\left(a+b\right)^2-2ab}{\left(ab\right)^2}=\frac{1+1}{\frac{1}{4}}=8\)
\(P=\frac{a^2\left(2a+1\right)+b^2\left(2b+1\right)}{\left(2a+1\right)\left(2b+1\right)}=\frac{2\left(a^3+b^3\right)+a^2+b^2}{4ab+2\left(a+b\right)+1}=\frac{2\left(a+b\right)^3-6ab\left(a+b\right)+\left(a+b\right)^2-2ab}{4ab+2\left(a+b\right)+1}=...\)
Bạn tự thay số và bấm máy, làm biếng quá