a) Ta có
Biến đổi tử phân số A
x^3-x^2-10x-8=(x^3-4x^2)+(3x^2-12x)+(2x-8)
=x^2(x-4)+3x(x-4)+2(x-4)=(x^2+3x+2)(x-4)
=(x^2+x+2x+2)(x-4)=[x(x+1)+2(x+1)](x-4)
=(x+1)(x+2)(x+4) (1)
Biến đổi mẫu của phân số A:
x^3-4x^2+5x-20=x^2(x-4)+5(x-4)=(x^2+5)(x-4) (2)
Từ (1) và (2) suy ra:
A=(x+1)(x+2)/x^2+5
\(A=\dfrac{x^3-x^2-10x-8}{x^3-4x^2+5x-20}\\ ĐKXĐ:x\ne4\)
a) Với \(x\ne4\)
\(\text{Ta có : }A=\dfrac{x^3-x^2-10x-8}{x^3-4x^2+5x-20}\\ =\dfrac{x^3+x^2-2x^2-2x-8x-8}{\left(x^3-4x^2\right)+\left(5x-20\right)}\\ =\dfrac{\left(x^3+x^2\right)-\left(2x^2+2x\right)-\left(8x+8\right)}{x^2\left(x-4\right)+5\left(x-4\right)}\\ =\dfrac{x^2\left(x+1\right)-2x\left(x+1\right)-8\left(x+1\right)}{\left(x^2+5\right)\left(x-4\right)}\\ =\dfrac{\left(x^2-2x-8\right)\left(x+1\right)}{\left(x^2+5\right)\left(x-4\right)}\\ = \dfrac{\left(x^2-4x+2x-8\right)\left(x+1\right)}{\left(x^2+5\right)\left(x-4\right)}\\ =\dfrac{\left[\left(x^2-4x\right)+\left(2x-8\right)\right]\left(x+1\right)}{\left(x^2+5\right)\left(x-4\right)}\\ =\dfrac{\left[x\left(x-4\right)+2\left(x-4\right)\right]\left(x+1\right)}{\left(x^2+5\right)\left(x-4\right)}\\ =\dfrac{\left(x+2\right)\left(x-4\right)\left(x+1\right)}{\left(x^2+5\right)\left(x-4\right)}\\ =\dfrac{\left(x+2\right)\left(x+1\right)}{x^2+5}\)
Vậy \(A=\dfrac{\left(x+2\right)\left(x+1\right)}{x^2+5}\) với \(x\ne4\)
b) Với \(x\ne4\)
Để \(A\ge0\) thì \(\Rightarrow\dfrac{\left(x+2\right)\left(x+1\right)}{x^2+5}\ge0\) \(\Rightarrow\left(x+2\right)\left(x+1\right)\ge0\left(\text{Vì }x^2+5>0\right)\) Lập bảng xét dấu: \(\Rightarrow\left[{}\begin{matrix}x\le-2\\x\ge-1\end{matrix}\right.\) Vậy để \(A\ge0\) thì \(x\le-2;x\ge-1\)