a) 2x3-50x=2x(x2-25)=0
=> \(\left\{{}\begin{matrix}2x=0=>x=0\\x^2-25=0=>x=\pm5\end{matrix}\right.\)
b) x3-8=(x-2)3
<=>(x-2)(x2+2x+4)=(x-2)(x2-4x+4)
<=>(x-2)(x2+2x+4)-(x-2)(x2-4x+4)=0
<=>(x-2)(x2-x2+2x+4x+4-4)
<=>6x(x-2)=0
\(=>\left\{{}\begin{matrix}6x=0=>x=0\\x-2=0=>x=2\end{matrix}\right.\)
c) x3+5x2-4x-20=0
<=>x2(x+5)-4(x+5)=0
<=>(x2-4)(x+5)=0
\(=>\left\{{}\begin{matrix}x^2-4=0=>x=\pm2\\x+5=0=>x=-5\end{matrix}\right.\)