\(x=4-2\sqrt{3}\Rightarrow\sqrt{x}=\sqrt{3}-1\)
Vậy \(P=\dfrac{\sqrt{3}-1-1}{\sqrt{3}-1-3}=\dfrac{\sqrt{3}-2}{\sqrt{3}-4}\)
\(x=4-2\sqrt{3}\Rightarrow\sqrt{x}=\sqrt{3}-1\)
Vậy \(P=\dfrac{\sqrt{3}-1-1}{\sqrt{3}-1-3}=\dfrac{\sqrt{3}-2}{\sqrt{3}-4}\)
1.cho biểu thức A=\(\dfrac{\sqrt{x}+2}{\sqrt{x}+3}-\dfrac{5}{x+\sqrt{x}-6}-\dfrac{1}{\sqrt{x}-2}\)với(x≥0;x≠4)
a)rút gọn A
b)tính A khi x=6+4\(\sqrt{2}\)
2.cho biểu thức P=\(\left(\dfrac{4\sqrt{x}}{\sqrt{x}+2}-\dfrac{8x}{x-4}\right):\left(\dfrac{\sqrt{x}+2}{\sqrt{x}-2}+3\right)\)với x≥0;x≠1;x≠4
a)rút gọn P
b)tìm x để P=-4
cho biểu thức P=\(\left(\dfrac{1}{\sqrt{x}-\sqrt{x-1}}-\dfrac{x-3}{\sqrt{x-1}-\sqrt{2}}\right)\left(\dfrac{2}{\sqrt{2}-\sqrt{x}}-\dfrac{\sqrt{x}+\sqrt{2}}{\sqrt{2x}-x}\right)\)
a,rút gọn biểu thức
b,tính giá trị của biểu thức với x=3 - \(2\sqrt{2}\)
Cho \(P=\dfrac{3x-2\sqrt{x}-4}{x+\sqrt{x}-2}-\dfrac{\sqrt{x}+1}{\sqrt{x}+2}-\dfrac{2\sqrt{x}+2}{\sqrt{x}-1}\)
a, Rút gọn P.
b, Tính P khi \(x=4+2\sqrt{3}\)
c, Tìm xϵZ để PϵZ
a, Tính: \(A=\dfrac{2}{2+\sqrt{5}}-\sqrt{9-2\sqrt{20}}+\sqrt[3]{5\sqrt{5}}\)
b, Cho biểu thức: \(B=\left(\dfrac{2}{2\sqrt{x}-1}+\dfrac{3}{\sqrt{x}+2}-\dfrac{2\sqrt{x}}{2x+3\sqrt{x}-2}\right).\dfrac{2\sqrt{x}-\sqrt{x}}{6\sqrt{x}+4}\) với \(\left\{{}\begin{matrix}x\ge0\\x\ne\dfrac{1}{4}\end{matrix}\right.\)
Cho biểu thức D = \(\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+3}{x-9}\right):\left(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
với \(x\ne9,x\ge0\)
a) Rút gọn D
b)Tìm x để \(D< \dfrac{-1}{4}\)
Cho P = \(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}+\dfrac{3x+3}{9-x}\) và Q = \(\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\) với \(x\ge0;x\ne9\)
a) Rút gọn biểu thức P. Tính M = P : Q
b) Tìm giá trị nhỏ nhất của biểu thức A = \(x.M+\dfrac{4x+7}{\sqrt{x}+3}\)
Cho \(Q=\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}+1}{3-\sqrt{x}}\)
a, Rút gọn Q
b, Tính Q biết \(x=6+4\sqrt{2}\)
c, Tìm xϵZ để QϵZ
1. Rút gọn :
a) \(3\sqrt{2a}-\sqrt{18a^3}+4\sqrt{\dfrac{a}{2}}-\dfrac{1}{4}\sqrt{128a}\) ( với \(a\ge0\))
b) \(\dfrac{\sqrt{2}-1}{\sqrt{2}+2}-\dfrac{2}{2+\sqrt{2}}+\dfrac{\sqrt{2}+1}{\sqrt{2}}\) c) \(\dfrac{2+\sqrt{5}}{\sqrt{2}+\sqrt{3+\sqrt{5}}}+\dfrac{2-\sqrt{5}}{\sqrt{2}-\sqrt{3-\sqrt{5}}}\)
2) Cho biểu thức :
P = \(\left(\dfrac{1}{x-\sqrt{x}}+\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}}{x-2\sqrt{x}+1}\) (với \(x\ge0;x\ne1\))
a) Rút gọn P
b)Tìm giá trị của x để P \(>\dfrac{1}{2}\)
3) Cho biểu thức :
A= \(\left(\dfrac{\sqrt{a}}{\sqrt{a}-1}-\dfrac{\sqrt{a}}{a-\sqrt{a}}\right):\dfrac{\sqrt{a}+1}{a-1}\) ( với \(a>0;a\ne1\))
a) Rút gọn P
b) Tìm giá trị của A để A<0
Cho P=\(\left(\dfrac{\sqrt{x}-1}{3\sqrt{x}-1}-\dfrac{1}{3\sqrt{x}+1}+\dfrac{5\sqrt{x}}{9x-1}\right)\div\left(1-\dfrac{3\sqrt{x}-2}{3\sqrt{x}+1}\right)\)
a)Rút gọn P
b)Tính giá trị của P khi \(9x^2-10x+1=0\)
c)Tính giá trị của P khi \(x=8-2\sqrt{7}\)
d)Tìm các giá trị của x để P=\(\dfrac{6}{5}\)
e)Tìm x sao cho P=\(\dfrac{x}{5\sqrt{x}-3}\)
f)Tính giá trị của P khi \(x=a^{12}+a^2b^2+b^{12}\) với a, b là các số thực thỏa mãn đồng thời \(a^2+a^2b^2=4\), \(a^2+a^2b^2+b^2=8\)